

REPAiR

REsource Management in Peri-urban AReas:

Going Beyond Urban Metabolism

D2.6 Technical Documentation

Version 2.0

Authors: Christoph Franke (GGR), Gustavo Arciniegas (Geo-Col), Rusné Sileryte (TUD),

Max Bohnet (GGR), Jens-Martin Gutsche (GGR), Alexander Wandl (TUD), Stefanie

Gutsche (GGR)

Grant Agreement No.: 688920

Programme call: H2020-WASTE-2015-two-stage

Type of action: RIA – Research & Innovation Action

Project Start Date: 01-09-2016

Duration: 48 months

Deliverable Lead Beneficiary: GGR

Dissemination Level: PU

Contact of responsible author: repair@bk-tudelft.nl

This project has received funding from the European Union’s Horizon 2020 research and innovation

programme under Grant Agreement No 688920.

Disclaimer:

This document reflects only the author’s view. The Commission is not responsible for any use that may

be made of the information it contains.

Dissemination level:

• PU = Public

• CO = Confidential, only for members of the consortium (including the Commission Services)

mailto:repair@bk-tudelft.nl

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

3

Change control

VERSION DATE AUTHOR ORGANISATION DESCRIPTION / COMMENTS
1.0 01-

02-
2020

Ch. Franke GGR FIRST DRAFT VERSION

1.1 01-
09-
2020

A. Wandl
R. Sileryte
B. Dukai T.
Commandeur

TUD Additions to all chapters
through out the document

1.2 05-
09-
2020

Gustavo
Arciniegas

Geo-Col Additions to all chapters
through out the document

2.0 01-
10-
2020

S.Gutsche GGR FINAL VERSION

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

4

Acronyms and Abbreviations

AJAX Asynchronous JavaScript and XML

AoP Area of Protection

API application programming interface

ASMFA Activity-Based Spatial Material Flow Analysis

CE Circular Economy

CSRF Cross-site request forgery

CSS Cascading Style Sheets

DMP Data Management Plan

EC European Commission

EIS Eco-Innovate Solution

EU European Union

GDSE Geo-design Decision Support Environment

GPL General Public License

H2020 Horizon 2020

HTTP Hypertext Transfer Protocol

JS JavaScript

Lat Latitude

LCA Life Cycle Analysis

Lon Longitude

MVC Model-View-Controller

Nace Statistical Classification of Economic Activities

NUTS Nomenclature of Territorial Units for Statistics

ORBIS Company Database

OSF Open Science Foundation

PULL Peri-Urban Living Labs

REST Representational state transfer

SHP Shapefile

SLD Styled Layer Descriptor

UML Unified Modeling Language

URL Uniform Resource Locator

WFS Web Feature Service

WMS Web Mapping Service

WP Work Package

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

5

Table of Contents

Change control ...3

Acronyms and Abbreviations ...4

Table of Contents ...5

List of Figures ..7

List of Tables ..9

Publishable Summary .. 10

1 Introduction ... 11

1.1 Overview of the technical components of the GDSE ... 12

1.2 Hardware requirements.. 13

1.2.1 Hardware requirements for the Server (Backend) .. 13

1.2.2 Touch Table for the Frontend .. 13

1.2.3 Using the GDSE in Online-Workshops ... 14

2 Installation .. 17

2.1 Installation of the GDSE-Server ... 17

2.2 Installation of a development-environment for debugging 21

2.3 Testing, Branch Policy and Continuous Integration ... 22

3 Frontend and Backend Modules .. 24

3.1 Server backend ... 24

3.2 Web frontend .. 41

3.3 Internationalization .. 52

4 Data Management ... 53

4.1 Overview of the required data and user input .. 53

4.2 Material Flow Data preparation and Data Entry ... 65

4.3 Exporting Data .. 69

4.4 Integrating Geodata and Maps via WMS/WFS .. 72

4.5 Open Data Policy and Restrictions: User Management and Access Rights 80

5 Outlook of possible further development .. 82

Appendix ... 85

References ... 115

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

6

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

7

List of Figures

Figure 1: Technical components of the GDSE. .. 12

Figure 2: Code sample - example of a docker-compose.py file with compose file version 3.1

 ... 20

Figure 3: Code sample - example of a .env file ... 20

Figure 4: Code coverage of 86% visualized in a circular diagram (at 12.08.2020) 23

Figure 5: Architecture of the Django framework (https://djangobook.com/mdj2-django-

structure/) ... 24

Figure 6: Code sample - example model “Activity” .\repair\apps\asmfa\models\nodes.py25

Figure 7: Code sample - example serializer ”ActivitySerializer” of the model “Activity” 25

Figure 8: Code sample - example view “ActivityViewSet” on the model “Activity” 26

Figure 9: UML of flow data ... 28

Figure 10: User access to case studies ... 29

Figure 11: UML-diagram of strategy/solution classes ... 29

Figure 12: Set up page of the permissions of the group “WorkshopParticipant” in the

Django administration site ... 32

Figure 13: Screenshot of the HTML list-view on available casestudies

https://gdse.h2020repair.bk.tudelft.nl/api/casestudies/ ... 33

Figure 14: Screenshot of the REPAiR API Documentation

https://gdse.h2020repair.bk.tudelft.nl/api/docs/ ... 34

Figure 15: Example graph for material flows between actors ... 38

Figure 16: Code sample - use of collections - creation of a stakeholder category

.\repair\js\views\study-area\stakeholders.js .. 42

Figure 17: Code sample - excerpt of routing config in .\repair\js\app-config.js 43

Figure 18: Code sample - embedded script of an underscore template inside the django

template .\repair\templates\conclusions\workshop.html ... 44

Figure 19: Code sample - add a row showing a conclusion by rendering the template from

code sample in Figure 18 \repair\js\views\conclusions\conclusions.js 44

Figure 20: Two rendered conclusion rows in the GDSE as a result of code sample 9

https://gdse.h2020repair.bk.tudelft.nl/conclusions/ ... 45

Figure 21: Layout of same page at different resolutions. left: laptop with HiDPI screen

(1440x900), right: iPad (768x1024) ... 46

Figure 22: Entry point to the JS scripts on a page .. 47

Figure 23: Visualization of flows with OSM background map (Jochim 2018) 50

Figure 24: Visualization of flows in the GDSE with overlay controls .. 50

Figure 25: Sankey diagram with overlay controls .. 51

Figure 26: Muuri container, draggable and movable by touch in the GDSE “Ranking

Objectives” ... 52

file://192.168.198.10/Projekte%20aktuell/MB/1466%20WASTE%20RePair/80%20Deliverables/WP%202/D2.6/20200928_D2.6_MB_Abgabeversion%20stef%20work%20in%20progress_3.docx#_Toc52458617
file://192.168.198.10/Projekte%20aktuell/MB/1466%20WASTE%20RePair/80%20Deliverables/WP%202/D2.6/20200928_D2.6_MB_Abgabeversion%20stef%20work%20in%20progress_3.docx#_Toc52458617

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

8

Figure 27: An example of a successful table upload (green) and an error (red). 66

Figure 28: An example of a material hierarchy displayed in a tree-like structure 68

Figure 29: Red square indicates the button that allows downloading data which is visible in

the displayed Sankey diagram. .. 70

Figure 30: Adding a map layer to a category from the GDSE GeoServer. ... 72

Figure 31: Adding an external WMS or WFS layer service in the Study Area step. 79

Figure 32: Order of upload for different data sets... 85

Figure 33: Relationship between all tables ... 89

Figure 34: Example of the Administrative Units for the Pecs case study 92

Figure 35: Example of an actor in the GDSE interface that can be found under “Data Entry”

→ “Edit Actors” ... 97

Figure 36: Example of the “Edit Materials” tab in the GDSE “Data Entry” interface 100

Figure 37: Data Sources.. 105

file://192.168.198.10/Projekte%20aktuell/MB/1466%20WASTE%20RePair/80%20Deliverables/WP%202/D2.6/20200928_D2.6_MB_Abgabeversion%20stef%20work%20in%20progress_3.docx#_Toc52458628

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

9

List of Tables

Table 1 Online GDSE workshop generic format ... 15

Table 2: Description of classes to be set up in preparation of workshops 30

Table 3: Description of classes holding inputs of workshop participants 30

Table 4: HTTP methods, the actions performed on request and the permissions required

to execute the corresponding action .. 31

Table 5 parameters for filtering and aggregation flows ... 35

Table 6: Annotations to mark strings to be translated and the imports required to use the

annotations in the different programming/markup languages used in the project 52

Table 7: Overview of the required data and user input ... 54

Table 8: The aggregation level of the data depends on the display level 71

Table 9: User Management and Access Rights ... 80

Table 10: Template of “Area Levels” ... 90

Table 11: Template of “Areas” ... 91

Table 12: Template of “Activity Groups” ... 93

Table 13: Template of “Activities”.. 93

Table 14: Template of “Actors” ... 95

Table 15: Example of household type actors ... 96

Table 16: Template of “Geolocated Actors” ... 98

Table 17: Example of the Materials hierarchy and its corresponding table for the GDSE .. 99

Table 18: Template of the “Composition” table ... 101

Table 19: Dataset Administrative Units ... 108

Table 20: Dataset Materials .. 108

Table 21: Dataset Activity Groups ... 109

Table 22: Dataset Activity ... 110

Table 23: Dataset Actors .. 110

Table 24: Dataset Geolocated Actors ... 111

Table 25: Dataset Households ... 111

Table 26: Dataset Filtered actors .. 111

Table 27: Dataset Waste/ Product Composition .. 112

Table 28: Dataset Flows ... 113

Table 29: Dataset Stocks .. 113

Table 30: Dataset NACE-EWC correspondence table .. 114

Table 31: NACE-CPA correspondence table .. 114

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

10

Publishable Summary

The deliverable contains the technical documentation of the completed Geodesign

Decision Support Environment (GDSE). The GDSE is the core digital support tool of the

REPAiR project’s approach and methodology. It is a web-based open source tool that adapts

the geo design framework for the purpose of spatial diagnosis and creation of territorial and

systemic eco-innovative strategies towards a Circular Economy.

The technical documentation consists of an introductory overview on the technical

components of the GDSE, its licence and its hardware requirements, followed by step-by-

step explanation of the installation process. After that, the documentation goes into the

technical details of the frontend and the backend of the GDSE, explaining their structures,

designs and functionalities as well as the components and libraries used for the

programming. It then focuses on the data management, explaining the existing options for

uploading, editing and exporting data into and from the GDSE. The documentation ends

with an outlook on possible further developments and a list of follow-up repositories of

other projects already using and modifying the GDSE.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

11

1 Introduction

As described in previous deliverables, the Geodesign Decision Support Environment

(GDSE) is the core digital support tool of the REPAiR project’s approach and methodology.

It is a web-based open source tool that adapts the geo design framework for the purpose of

spatial diagnosis and creation of territorial and systemic eco-innovative strategies towards

a Circular Economy (CE) (Arciniegas et al., 2019a).

While the previous deliverables focused on the concept and methodology (REPAiR, 2016;

REPAiR, 2017a; REPAiR, 2017b) as well as the content and usage of the GDSE (REPAiR,

2019a; REPAiR, 2020), the focus of this deliverable is the technical documentation of the

completed GDSE.

Therefore, the documentation in this deliverable mainly addresses an audience more or less

familiar with database and web application technologies thinking about using the GDSE for

their own research, consulting, development or planning purposes. For these readers, it

aims to answer the two following questions:

1. How do I set up my own GDSE version to be used in my own research, consulting,

development or planning?

2. How can I technically modify the GDSE so that it fits even better the needs of my

own application context?

The technical documentation in this deliverable starts with an overview of the technical

components of the GDSE, its licence and its hardware requirements, followed by a step-by-

step explanation of the installation process. After that, the documentation goes into the

technical details of both the frontend and the backend of the GDSE, explaining their

structures, designs and functionalities as well as the components and libraries used for the

programming. The next chapter focuses on the data management, explaining the existing

options for uploading, editing and exporting data into and from the GDSE. The deliverable

ends with an outlook on possible further developments and lists follow-up repositories of

other projects already using and modifying the GDSE.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

12

1.1 Overview of the technical components of the GDSE

Figure 1: Technical components of the GDSE.

The GDSE is a Web-Application that runs on a web server. It can be accessed by multiple

users (clients) in parallel via web browsers connected to the internet (see Figure 1).

The Frontend is written in HTML/JavaScript, the Backend is programmed with the Python

framework Django 3.0. Next to the pure Python implementation of Django, several libraries

must be installed:

• Gdal/GEOS: The GDAL/GEOS-Libraries are the standard OpenSource-Libraries

for all geospatial operations

• Graph-tool: Graph-tool is a Python module used to model the impact of Eco-

Innovative Solutions on upstream, downstream, and circular flows.

• Imagemagick/Ghostscript are required to process the uploaded pdfs

• SQLITE/Spatialite is a geospatial database used in the unittests

• Postgresql/PostGIS is used as a production database.

• CircleCI to manage the Continuous Integration during the Software

Development

• May I use the GDSE in my own project? Licences, Property Rights etc.

The GDSE application is an open source project licensed with the GPLv2 (GNU General

Public License, version 2). With this license, anybody is allowed to freely use, copy, further

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

13

develop and adapt the software for commercial or non-commercial purposes as long as the

following conditions are met:

• the changed software in its entirety may only be given to third parties under the

license conditions of GPLv2;

• according to sec. 1 GPLv2, a copy of the license text must be provided with the

copy of the program;

• changed software files must contain a reference showing that changes were

made, as well as the date of such changes (see sec. 2 GPLv2);

• sec. 1 GPL provides that a “suitable” copyright sign (in this case © 2020 REPAiR)

must be affixed to each copyrighted item in an easily perceivable location;

• the corresponding source text in the form governed by sec. 3 GPLv2 must be

made accessible well (e.g. on Github, Gitlab or similar platforms)

• it is impermissible to make the use of the software depend on additional

obligations that are not listed in GPLv2, e.g. it is not allowed to protect the source

code by incorporating it into a proprietary software.

The IP rights of the GDSE software at all times stay with the REPAiR consortium.

More information about the license and the license text can be found here:

https://www.gnu.org/licenses/old-licenses/gpl-2.0.html

1.2 Hardware requirements

1.2.1 Hardware requirements for the Server (Backend)

The GDSE requires a Linux-Server to run the Backend. For REPAiR, a linux-server with 32

GB RAM proved to be sufficient to run the GDSE in the workshops on various computers by

various groups of participants. The PostgreSQL-Databases for REPAiR project measured <

1 GB.

1.2.2 Touch Table for the Frontend

The GDSE features interactive touch-enabled screens to facilitate on-location face-to face

workshop communication in two ways: 1) between users and the GDSE frontend software,

and 2) the dialogue between the GDSE users. Members of one small group (2 to 6

participants) use one touch table to interact with the GDSE frontend. Several touch tables

are used as there are small groups created in one workshop. REPAiR uses touch tables with

https://www.gnu.org/licenses/old-licenses/gpl-2.0.html

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

14

a diagonal screen size of 28 inches that can be easily switched between horizontal

(discussion) and vertical (presentation) mode. Larger touch tables can also be used as long

as the computer linked meets the hardware requirements.

1.2.3 Using the GDSE in Online-Workshops

The GDSE was developed as a web application that can be accessed on any browser

provided there is an internet connection and intended users have the right credentials to

access it. This allows PULL workshops to be held both remotely or on location. Online

GDSE-centred PULL workshops are hosted as webinars using video/web conferencing

platforms that allow to split the meeting in separate sessions (also known as breakout

rooms), allow screen sharing, and feature a chat box for interaction between participants

and the PULL hosting team members. In this way, the workshop participants are divided

into small groups, which can interact via chat messages with each other and the PULL

hosting team.

REPAiR organizes online GDSE workshops using the Zoom video conference platform’s

breakout rooms to host all participants and manage the small groups. The work of each

small group is facilitated by a PULL hosting team member in each breakout room, who acts

as the ‘pen holder’ in the GDSE. The Zoom chat box is used for sharing hyperlinks with users,

for example to online pre- and post-workshop surveys (prepared using Google Forms),

instruction videos (prepared using YouTube), and further instructions in the form of text.

Through screen sharing, participants can see in real time their work and progress.

The general goal of an online PULL workshop is to have each small group co-develop one

eco-innovative strategy for a particular PULL-specific key flow, addressing the objectives

defined in early stages of the PULL process, and utilizing the Eco-Innovative Solutions (EIS)

previously defined in the catalogue (see the REPAiR catalogues of solutions and strategies

for all six cases in deliverables 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8). Each small group uses the GDSE

to follow the process of

• ranking objectives per (small) decision-maker group;

• setting resource flow targets the group wants to achieve;

• co-developing one strategy per small group;

• assessing the changes in terms of flows the strategy achieves in relation to the

targets set.

The workshop follows the following generic format:

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

15

Table 1 Online GDSE workshop generic format

Activity Hosting team prepares

Welcome and surveys Pre-workshop online survey [LINK provided in chat
box]
Consent forms [LINK provided in chat box]

Split into Breakout rooms (small groups) Breakout rooms

Welcome presentation
Intro and aim of the workshop

Guiding online presentation about the PULL case [URL
to slideshow], using ‘share screen’ function

Introduce Subgroups Explain and define ‘pen holder’ for subgroups
A quick presentation on parts of GDSE

Work in the main room:
Study area

On GDSE show:
a. A quick presentation on parts of GDSE
b. Basic layers of infrastructure and demography in

categories (demo of maps)
c. List of stakeholders involved
d. Definition of the key flow

Status Quo

a. Flows - a maximum of six flow views.
Show users how to aggregate on different levels
and how to select features to be visualised on the
map.

b. Flow indicators prepared
c. Wastescapes: layers of the wastescapes maps

briefly explained
Objectives – show the list of objectives

Sustainability assessment status quo

Results of the sustainability assessment of the case
are presented in the GDSE, show different results of
the AoP
Introduce Subgroups
‘Pen holder’ for subgroups

Split into breakout rooms Login in and have users test the functionality of tool
Share screen
video ‘How to log in link’ [URL also provided in chat
box]

Credentials for small groups

Send instructions video for the next step
to the breakout rooms/ demonstrate the
next step using a shared screen.

Target Objective –objectives
Video link targeting objective

Ask users to rank the objectives
Discussion follows
If there is a disagreement, have them vote.

Send instructions video to breakout
rooms
Setting Flow targets/ demonstrate the
next step using a shared screen.
Video link URL provided in chat box

Have them discuss which targets they want to set to
which indicators and related objectives.

There are three different indicators:

• waste produced by number of inhabitants
• waste produced by area
• waste going into incineration

if there is disagreement among the stakeholders note
it down in the notes tab.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

16

Send instructions video to breakout
rooms:

Strategy / demonstrate the next step
using a shared screen.

Video link URL provided in chat box

a. Solutions - show the list of solutions demonstrate
the information for one and let them look at the
others (use only tabs Description and CE-
Diagrams)

b. Define Strategy - show them the steps of defining
a strategy and let them discuss which solutions
they want to combine. (minimum 3 solutions max
5)

c. After they finished, define the strategy press
calculate

Coffee break

d. Investigate the modified flows;
e. See target control -check how the strategy

related to their targets;

Coffee break
Back to the main room

GDSE step Conclusions logged on as data captain

Plenary discussion: comparison of
strategies, feedback exchange

Conclusions
a. Show a comparison of the objectives between the

groups, ask groups for the arguments for their
ranking;

b. Show the comparison of the strategies
groups present the argument for their strategy

Closing Reflections
Post-workshop Survey [LINK in chat box]

In order to make the online sessions of the PULL meetings easier to handle, simple step-by-

step videos have been produced for those steps in the GDSE that can be followed by a group

without moderation. The aim of the videos is to have multiple small stakeholder groups

working in parallel at the same time.

The following videos are available online:

1. How to log in. link to video

(https://www.youtube.com/watch?v=EwbobYRvwJI&feature=youtu.be)

2. How to rank objectives. link to video

(https://www.youtube.com/watch?v=VvcUZBDd5Ww&feature=youtu.be)

3. Setting Flow targets. link to video (https://www.youtube.com/watch?v=zMuks-

KFdFg&feature=youtu.be)

4. Defining a strategy. link to video (https://www.youtube.com/watch?v=zMuks-

KFdFg&feature=youtu.be)

https://youtu.be/EwbobYRvwJI
https://youtu.be/VvcUZBDd5Ww
https://youtu.be/zMuks-KFdFg
https://youtu.be/fOFsvYJ70UA
https://www.youtube.com/watch?v=zMuks-KFdFg&feature=youtu.be
https://www.youtube.com/watch?v=zMuks-KFdFg&feature=youtu.be

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

17

2 Installation

2.1 Installation of the GDSE-Server

Requirements

Linux is the recommended Operating System to run the server in. Some libraries are

difficult to install under Windows, especially graph-tool, the library to build and analyse

graphs.

The required libraries are the following:

• Python 3.6 including pip

• GDAL 2 and GEOS

• PostgreSQL libraries with PostGIS extension

• Imagemagick and ghostscript for PDF conversion

• git to pull the code from the REPAiR-repository

• gettext for internationalization

• node and yarn to manage the JavaScript-modules

• graph-tool and its dependencies pycairo and pygobject

Database

Theoretically, any database with a spatial extension supported by Django can be used to

store and access the data required by the GDSE. Nevertheless, the REPAiR GDSE was

developed to be used with PostgreSQL. Spatialite should work as well, but is not

recommended to use productively due to problems with concurrent accesses.

If you want to use PostgreSQL as your backend, you have to create a blank database first.

The database also has to support the POSTGIS extension. To protect the data and user

inputs, you should set up regular backups of this database.

Run the Django server

To prepare and start the Django server, the following steps have to be executed in the

directory you want to install the server to:

• Clone the repository

git clone https://github.com/MaxBo/REPAiR-Web.git

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

18

• Enter the directory that was created while cloning

cd REPAiR-Web

• Pull the latest version of REPAiR-Web from the master-branch in Github (not
necessary directly after cloning)

git pull

• Install the requirements in python with pip

pip install -r requirements-dev.txt

• Install the JavaScript-Requirements with Yarn

yarn install

• Bundle the Java-Script-modules with webpack

node_modules/.bin/webpack—config repair/webpack.prod.config.js

• Collect the static Files used in the website (images, Logos etc.)

python manage.py collectstatic --noinput

• Migrate the Database to apply the latest changes in the Database scheme

python manage.py migrate

• Compile the messages (translation of the website into different languages)

python manage.py compilemessages

• Start the Django server locally on a specific port

python manage.py runserver localhost:<port>

Settings and environment variables

The configuration of Django is done with Python settings-files. Those files are located in the

sub-directory repair of the installation directory. In there you will find the file settings.py

with the basic settings. You should at least adapt the variable ALLOWED_HOSTS there. It

contains the host/domain names that this Django site can serve (see

https://docs.djangoproject.com/en/3.1/topics/settings). All other settings are based on the

settings.py but define different database and debug settings.

The productive server of the REPAiR-GDSE is running with the settings defined in

settings_prod.py. It is configured to use a PostgreSQL backend. If you want to use a similar

setup, you can use this one as a template and set a different host and port. The credentials

of the database are not written into the settings in plain text but passed by environment

variables DB_NAME, DB_USER and DB_PASS.

Do not put any credentials into the settings files ever or otherwise anybody can see them

on Github after pushing them. Use environment variables instead. That applies to the secret

key as well. It should be overwritten by the environment variable SECRET_KEY in a

productive setup.

https://docs.djangoproject.com/en/3.1/topics/settings/

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

19

After defining the settings, you have to inform Django which settings-file to use. You can do

this either by passing the keyword-argument --settings=<filename without extension> to run

the manage.py script or by setting the environment variable

DJANGO_SETTINGS_MODULE (e.g. DJANGO_SETTINGS_MODULE= repair.settings_prod).

Under a Linux environment you additionally have to tell Django where the GDAL

installation is located with the environment variable GDAL_DATA.

Next to Django, webpack needs to be configured. Webpack is used in this project to bundle

the JavaScript modules. The JavaScript-configuration-files define amongst other things the

paths to the scripts, the entry points and the debug-settings. Different configurations are

provided in the directory .\repair including settings for the productive and staging servers.

Using Docker

The installation of the required libraries is not straightforward due to the complex

dependencies of these libraries. Therefore, using a Docker Container to install the libraries

in an isolated environment is highly recommended.

In the scope of the REPAiR project a container able to run the GDSE was created. It is built

on Linux Debian 9 (Stretch) as a base image. Next to the libraries mentioned in the section

Requirements, it contains support for spatialite databases and CircleCI. CIrcleCI is included

because the same image is used for running the tests to support a continuous development

with CircleCI (see Testing, Branch Policy and Continuous Integration).

The docker image is available at

https://hub.docker.com/repository/docker/maxboh/docker-circleci-node-miniconda-gdal

(tag graph_tool_stretch)

To pull the image, run

docker pull maxboh/docker-circleci-node-miniconda-gdal:graph_tool_stretch

The image is automatically built based on the Dockerfile available at

https://github.com/MaxBo/docker-circleci-node-miniconda-gdal/tree/graph_tool_stretch

If you use the docker container to run the GDSE, the installation of the libraries mentioned

sbovr is not required. Instead, just Docker has to be installed on the machine running the

server.

To run the server within the pulled docker container you have to proceed the steps

described under Run the Django server inside the container.

https://hub.docker.com/repository/docker/maxboh/docker-circleci-node-miniconda-gdal
https://github.com/MaxBo/docker-circleci-node-miniconda-gdal/tree/graph_tool_stretch

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

20

Alternatively, you might create a docker-compose.yml. The following docker-compose.yml

automatically pulls the container and the repository, starts the server and keeps the server

alive on restart. See Figure 2 below.

version: '3.1'

services:

 web:
 env_file: .env
 image: maxboh/docker-circleci-node-miniconda-gdal:graph_tool_stretch
 command: bash -c "cd /home/circleci/repairweb && echo $PWD && git pull &&
git checkout stable && pip install -r requirements-dev.txt && yarn install &&
node_modules/.bin/webpack --config repair/webpack.prod.config.js && python
manage.py collectstatic --noinput && python manage.py migrate && python
manage.py compilemessages && python manage.py runserver 0.0.0.0:8000"
 ports:
 - "${REPAIRPORT}:8000"

 volumes:
 - ./static:/home/circleci/repairweb/repair/public/static
 - ./media:/home/circleci/repairweb/repair/public/media

 restart: always

Figure 2: Code sample - example of a docker-compose.py file with compose file version 3.1

In the example above the productive branch is called “stable”. The environment variables

are set in the .env-file. The .env-file has to contain all environment variables described in

the section Settings and environment variables especially the variable

DJANGO_SETTINGS_MODULE to tell Django which settings-file to use. Furthermore, the

static and media directories are mapped to directories outside the container.

If you are using the docker-compose.yml as shown above, you also have to define the

variable REPAIRPORT to set the port in the environment running the container. See Figure

3 below.

DJANGO_SETTINGS_MODULE=repair.settings_prod
DB_NAME=gdse
DB_USER=[...]
DB_PASS=[...]
SECRET_KEY=[...]
REPAIRPORT=8001

Figure 3: Code sample - example of a .env file

To start the server with docker-compose type the following inside the directory with the

docker-compose.py file:

docker-compose up -d

To stop the server type

docker-compose down

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

21

To apply changes made to the branch the docker-compose file pulls from to the server, the

easiest way is to stop and restart the server.

Finally, you have to expose the chosen port and grant access to the static and media

directories. How this is done depends on the HTTP server software used on the server.

2.2 Installation of a development-environment for debugging

To set up a development environment, you first have to dissolve all dependencies listed

under Requirements. Under Windows, you may skip the installation of graph-tool because

there are no graph-tools binaries available for windows and compiling graph-tools for

windows is not supported by the time of writing. Be aware that you cannot trigger any

calculations of strategies if you skipped the graph-tool installation. All other modules

should work without it.

It is recommended to create a local PostgreSQL-database for debugging. Alternatively you

may use a configuration for a spatialite-database (.\repair\settings_dev.py) or create a custom

settings file to connect to the productive database. However, the latter is not recommended

because all migrations in development will be applied to the productive database and might

not work with the state of the productive branch. Regardless which configuration you

choose, the variable DEBUG should be set to True in your settings. The way to set up the

environment variables mentioned in the section Settings and environment variables

depends on the IDE you are using to debug.

Before starting the server you have to take the same steps mentioned under Run the

Django server except the webpack-bundling. It is recommended to run all python

commands in an environment, either a virtualenv or a conda environment. To bundle the

JavaScript files in a debug environment run the server-dev.js script provided in the root

directory of the installation:

node server-dev.js

The script runs a server providing the bundled scripts locally on port 8001. It keeps track of

changes to the JavaScript files and automatically rebundles them without the need to

restart. To change the port, you have to manually edit the files server-dev.js and <ints.

dir>/repair/webpack.dev.config.js.

Another option is to debug in a vagrant container. There is a detailed description of how to

do this under https://github.com/MaxBo/REPAiR-Web/blob/master/VAGRANT.md.

https://github.com/MaxBo/REPAiR-Web/blob/master/VAGRANT.md

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

22

2.3 Testing, Branch Policy and Continuous Integration

When you want to adapt the GDSE to your own needs, make a fork of the repository. Do

this either on the Github repository webpage or with Git console commands. The following

paragraphs describe the recommended way to develop as done in the REPAiR project.

There are two separate servers running the GDSE: the productive server at

https://gdse.h2020repair.bk.tudelft.nl and a development server at

https://staging.h2020repair.bk.tudelft.nl. The development server is in the state of the

master branch of the Github repository. It runs in debug mode and is meant to test changes

to the user interface and the interactions with the backend before going into production.

The productive server is linked to the branch “stable”. After changes are approved, the

master should be merged into the stable branch. The productive server is running in a

docker container executing all necessary pulls and migrations, so a restart of the container

is sufficient to apply the changes. If your productive server does not contain automatic

migrations etc. on startup, you have to rerun specific single steps mentioned under Run the

Django server depending on the changes compared to the previous state.

The master branch itself is protected. This means that changes to the code cannot be

pushed directly to the master branch but separate (feature) branches have to be used and

merged into the master via pull requests. The repository is configured to run tests before a

pull request is accepted. Therefore, it is connected to CircleCI as a Continuous Integration

system. The configuration can be found in the file .\.circleci\config.yml. The tests are located

in the directories of the apps.

Next to the tests, CircleCI is configured to keep track of the amount of code covered by the

tests. Ideally the code coverage is around 100% to ensure a stable runtime of the server.

The code coverage of the REPAiR project can be seen in the figure below (figure 4).

https://gdse.h2020repair.bk.tudelft.nl/
https://staging.h2020repair.bk.tudelft.nl/

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

23

Figure 4: Code coverage of 86% visualized in a circular diagram (at 12.08.2020)

In summary, the workflow to implement new features in the continuous integration

environment involves the following steps:

1) Create a new branch or feature branch.

2) Write a test.

3) Implement the code.

4) Commit and push to your branch.

5) Create a pull-request on Github.

6) Wait for CircleCi to run the tests.

If build was successful:

a) Merge your branch into the master

else:

b) Enter step 3 to fix the code and continue the circle

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

24

3 Frontend and Backend Modules

3.1 Server backend

The server backend of the GDSE is written in Python 3 and based on the Django web

framework. Its main purpose is to listen to incoming requests and to manage, filter and

provide the data to the frontend. It also serves the templates and static files required by the

frontend to view the website.

Basic architecture

The architecture of the backend is determined by the architecture of the Django

framework, which is similar to the Model-View-Controller pattern (see Figure XX). It does

not strictly follow this pattern but tries to keep the data, the view logic and the business

logic separate. There is no clear distinction in Django between View and Controller.

Therefore, Django is sometimes referred to as a loosely coupled framework with a Model-

View-Template pattern. https://djangobook.com/mdj2-django-structure/)

Figure 5: Architecture of the Django framework (https://djangobook.com/mdj2-django-structure/)

The Django models provide access to resources inside the database and contain the

business logic, how the data can be created, stored and changed. A model represents a

database table with the fields as attributes of the model. The code sample in Figure 6 below

https://djangobook.com/mdj2-django-structure/
https://djangobook.com/mdj2-django-structure/

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

25

shows an excerpt of a simple model representing the activities. Each activity has a name, a

code (Nace-Code) and refers to an Activity-Group.

class Activity(Node):
 nace = models.CharField(max_length=255)
 name = models.CharField(max_length=255)
 activitygroup = models.ForeignKey(ActivityGroup,
 on_delete=PROTECT_CASCADE)
 [...]

Figure 6: Code sample - example model “Activity” .\repair\apps\asmfa\models\nodes.py

The serialization of resources for the purpose of transferring them to the client and the

deserialization back into models is done by the Django REST framework. The framework

also allows the implementation of a RESTful API to access the views on the resources. A

serializer for the activity model is shown in the next code sample.

class ActivitySerializer(CreateWithUserInCasestudyMixin,
 NestedHyperlinkedModelSerializer):
 parent_lookup_kwargs = {
 'casestudy_pk': 'activitygroup__keyflow__casestudy__id',
 'keyflow_pk': 'activitygroup__keyflow__id'
 }
 activitygroup = IDRelatedField()
 activitygroup_url = ActivityGroupField(
 view_name='activitygroup-detail',
 source='activitygroup',
 read_only=True)
 activitygroup_name = serializers.CharField(
 source='activitygroup.name', read_only=True)
 flow_count = serializers.IntegerField(read_only=True)
 [...]

Figure 7: Code sample - example serializer ”ActivitySerializer” of the model “Activity”

Django views take requests from the clients and return appropriate responses. Depending

on the purpose of the view the response can either be a web page or a serialized resource.

Access to the views and resources is provided by URLs via HTTPS. The mapping of urls to

the views is done in the file.\repair\urls.py. The code sample in Figure 8 shows a view that

returns information on one or several activities as an answer to a GET-Request and handles

the data to create a new activity sent by a POST-Request.

class ActivityViewSet(PostGetViewMixin, RevisionMixin,
 CasestudyViewSetMixin, ModelPermissionViewSet):
 pagination_class = UnlimitedResultsSetPagination
 add_perm = 'asmfa.add_activity'
 change_perm = 'asmfa.change_activity'
 delete_perm = 'asmfa.delete_activity'
 serializer_class = ActivitySerializer
 queryset = Activity.objects.order_by('id')
 serializers = {'list': ActivityListSerializer,

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

26

 'create': ActivityCreateSerializer}

 def get_queryset(self):
 [...]

Figure 8: Code sample - example view “ActivityViewSet” on the model “Activity”

Templates contain the actual design of the web page as HTML. Next to static content, they

have a special syntax to generate dynamic content. The system used to fill the dynamic parts

is the Django template language. The templates are put together and provided by specific

views on request and are then rendered client-side (see Web frontend).

Project Structure

The code is organized in separate applications. Each app holds specific models, views,

serializers and tests. The apps are located at.\repair\apps.

The most basic GDSE models are inside the app “login”. That includes the models and views

related to the user management and the case studies.

The most extensive app is the “asmfa” app. “asmfa” means “Activity-Based Spatial Material

Flow Analysis”. It contains the models related to material flow data like actors, key flows

and materials. It is also home of the Graph Walker algorithm to calculate the impact of

strategies on existing flows and the Flow Filters and flow aggregation functions. It has no

views on web pages.

The HTML web page views and the URLs leading to them are part of the apps that represent

the steps of the GDSE decision-making process: “data-entry”, “study-area”, “status-quo”,

“targets”, “changes” (step “Strategy”), and “conclusions”. These apps also contain models

storing client-side user inputs like defined strategies and indicator settings.

The apps “publications”, “wmsresources” and “reversions” are modifications of existing 3rd

party extensions with custom bug fixes and adaptations to the needs of the GDSE.

Data Structure

The flow data used for the AS-MFA is acquired on an actor level. Originally it was intended

to store the data between activities and activity groups as well. To avoid redundancies and

mismatching results on different observation levels, it was decided to store flows between

actors only and aggregate the data to the activity or activity group level on demand (see

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

27

Flow Filters). Remnants of the data structure to store the flows on different levels can still

be found throughout the code but do not serve any purpose anymore.

The flow data is initially stored with compositions of materials flowing from an origin to a

destination actor. Compositions are either waste or products. They are composed of

fractions of materials as visualized in the box named “old structure” in the UML (Unified

Modelling Language) diagram in Figure 9. The advantage of this structure is that

compositions are generalizable and can be reused in different scenarios. The concrete

composition of materials is often not known but derived statistically and sampled anyway.

This applies to the sampling of the composition of residual waste for example (REPAiR,

2019b).

During the project, this structure of flows, compositions and fractions turned out to be

overly complicated. In particular, some of the required filter functions could hardly be

realized due to the complex relations. A new structure was introduced merging the

separate tables of compositions, fractions, stocks and flows into a single one - the

FractionFlow (see Figure 9). Every flow of material is represented by a single flow instead of

being bundled in flows of compositions. Stocks are no longer needed as a separate model

but represented by the FractionFlow as well by having no destination.

Both structures still exist next to each other in the database at the moment. The old

structure is still used to bulk upload data (see Annex 1) and in the data entry. The

transformation of the flow data into the new FractionFlow format is triggered

automatically on change or creation. A single flow from Actor to Actor (Actor2Actor flow)

might be split into several FractionFlows, one for each fraction in the original composition of

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

28

a flow. The FractionFlow keeps the information about which Actor2Actor flow it was created

from.

Figure 9: UML of flow data

The default Django user management is extended in the GDSE (see Figure 10). Every user

has a Profile that defines which case studies can be accessed by the user and persists the

user session attributes (see Sessions). Furthermore, the profile can be related to by multiple

UserInCasestudy entries. The UserInCasestudy is used to assign strategies and to determine

which users will be compared in the conclusions.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

29

Figure 10: User access to case studies

Before strategies can be defined by the user during the workshops, the presentation and

the logic of possible solutions have to be defined in the setup mode via the frontend

(REPAiR, 2020).

logic: how schemes are translated

The backend supports and stores the inputs with the database tables visualized in the

“setup” box in the UML-diagram in Figure 11 and described in Table 2.

Figure 11: UML-diagram of strategy/solution classes

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

30

Table 2: Description of classes to be set up in preparation of workshops

CLASS DESCRIPTION

SolutionCategory ● categorizes solutions for clarity
● key flow specific

Solution ● defines, how the solution changes flows
● instructions for graph walker algorithm
● consists of multiple solution parts

SolutionPart ● single step in a solution
● detailed instruction how to change a set of flow
● flow_reference marks flows, that are directly changed by the

SolutionPart (“before”)
● flow_changes describes, how marked flows change their

attributes (“after”)
● affected_flows mark further flows to be impacted indirectly by

changes

FlowReference ● description to filter flows (“before”) respectively
instruction to change attributes of flows (“after”)

● Attributes (all optional)
○ origin_activity (changeable) - activity of the origin actors
○ destination_activity (changeable) - activity of the destination

actors
○ material, hazard, waste or product, process (changeable)
○ origin_area (only for description) - spatial area origin actors

are located in
○ destination_area (only for description) - spatial area

destination actors are located in

AffectedFlow a. description of flows, similar to FlowReference
b. used to mark flows to be impacted by changes

ImplementationQuestion ● question for magnitude of change
● relative or absolute change
● defines domain of possible inputs by user
● defined for a specific solution
● same question can be used by multiple solution parts

PossibleImplementation-
Area

a. question, where a solution can be implemented
b. defines boundaries where users can draw in their

implementation area
c. defined for a specific solution
d. same area can be used by multiple solution parts

In the workshop mode, the defined solutions can be picked and applied to the strategy of

the user. The database tables in the backend, that store the input are mapped in the “user

inputs” box in the UML-diagram in Figure 11 and described in Table 3.

Table 3: Description of classes holding inputs of workshop participants

CLASS DESCRIPTION

Strategy ● auto-created for each user who has access to the case study
● key flow specific
● at the moment restricted by the logic to one per user and key

flow

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

31

● can contain multiple implementations

SolutionInStrategy ● single implementation of a solution by the user

ImplementationQuantity ● “answer” to ImplementationQuestion
● concrete values for magnitude of direct changes made to flows

ImplementationArea

● “answer” to PossibleImplementationArea
● geometry to filter actors whose incoming resp. outgoing flows

will be changed, depending on definition of FlowReference

Data Access

The resources which are stored in the backend are accessible via an API following the

specifications of RESTful APIs. Every type of resource is represented by an own route that

is accessible via HTTP methods. The available methods and their corresponding actions are

displayed in Table 4.

Table 4: HTTP methods, the actions performed on request and the permissions required to execute the
corresponding action

HTTP method action performed required permission

GET get resource view

POST create resource add

PUT update resource (create if not
exists)

change (add)

PATCH partially update resource change

DELETE delete resource delete

Unlike REST standards, the implemented API is not perfectly stateless. The user session

stored in the backend is used to determine the permissions to access resources. The access

to specific case studies is set in the profile a user has (see Data Structure). Furthermore, the

actions a user can perform with different types of resources are regulated in detail via user

and group permissions.

The actions to view, add, change or delete a resource are prohibited by default and have to

be permitted individually. An exception is the administrator, who has access to all resources

with all actions by default. Next to the permissions for access to resources there are two

special permissions on a case study in the login-section. These permissions determine, if a

user or group is permitted to enter the setup mode respectively has access to the data entry

section.

Regardless of the permissions, most of the resources are protected against cascaded

deletions. E.g. the “Activity” model as shown in the code sample in Figure 6 is a protected

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

32

resource that can only be deleted in the API, if there are no flows or other resources left,

that point to the Activity. The protection does not apply to the database tables themselves

and can be circumvented by deleting the entries there directly.

The permissions can be defined for individual users or for a group of users. It is

recommended to create groups with special permissions and assign the users to these

groups. It could become very time consuming and confusing to set permissions to every

single user. The groups defined in the REPAiR-project and their rights assigned are

described in Section 4.5.

An example for a workshop group is shown in Figure 12: Set up page of the permissions of

the group “WorkshopParticipant” in the Django administration site. The groups used in the

REPAiR project can be found as a JSON-dump at .\repair\fixtures\repair_groups.json with the

relations to permissions as natural keys (in plain text).

Figure 12: Set up page of the permissions of the group “WorkshopParticipant” in the Django administration
site

The routes to the resources are defined in .\repair\rest_urls.py. The entry point to the API is

mapped to <domain>/api. It can be navigated through HTML views if called in a browser.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

33

Figure 13: Screenshot of the HTML list-view on available casestudies
https://gdse.h2020repair.bk.tudelft.nl/api/casestudies/

The List-View shows a list of all available ressources. For example <domain>/api/casestudies/

shows all case studies and their attributes including the id (see figure 13). The details to the

case study with id 1 can be requested via the route <domain>/api/casestudies/1. The routes

represent the hierarchy and relations of the underlying models. Deeper routes always have

a relation to its preceding subroutes. For example, activities available in case study 1 can be

accessed via <domain>/api/casestudies/1/activities.

Which case study an activity belongs to, is defined by the key flow of its parent activity group

as defined in the Activity serializer (see code sample in Figure 7:).

A detailed documentation of all routes and available methods can be obtained under

<domain>/api/docs.

https://gdse.h2020repair.bk.tudelft.nl/api/casestudies/

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

34

Figure 14: Screenshot of the REPAiR API Documentation https://gdse.h2020repair.bk.tudelft.nl/api/docs/

All information about the request and the expected response is encoded in the URL-route

and in the query parameters. Usually a GET request is sent to the URL to view resources

with filter instructions inside the query parameters. Due to technical limitations, URLs

might get too long especially when filtering spatially. Therefore, some backend views like

actors and locations are configured to accept query parameters in the request body as a

substitute for the URL query parameters. To indicate a view request with query parameters

inside the body, a POST request has to be sent to the resource route alongside the URL

parameter “GET=True”.

To avoid the time-consuming individual upload of resources of the same type in large

amounts, the possibility of bulk uploading data was implemented (REPAiR, 2020).

Therefore some list-views of the REST API provide the possibility to upload a file containing

multiple entries including the values of the fields to be set (e.g.

/api/casestudies/<id>/keyflows/<id>/activitygroups/). A template file with the required

structure to fill and upload can be requested by sending a get request to the list-view of

resources supporting bulk uploads with the query parameter “request” set to “template”

(e.g. <domain>/api/casestudies/<id>/keyflows/<id>/activitygroups/?request=template)

https://gdse.h2020repair.bk.tudelft.nl/api/docs/

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

35

Flow Filters

As mentioned in the chapter Data Structure, the data of flows is stored in the database on

actor level only. To view flows on activity or activity group level the data has to be

aggregated. The aggregation is done server-side. Furthermore, the flows can be filtered by

rather complex, chained filters. That includes filters for the origin or destination of flows

and the materials (see table 5). The filter functions can be found in the “asmfa” app under

.\repair\apps\asmfa\views\flowfilter.py.

Table 5 parameters for filtering and aggregation flows

KEYWORD DESCRIPTION ATTRIBUTES ATTRIBUTE DESCRIPTION

filters list of logically linked
sub-terms (AND
linked)

link logical link between django filter
functions in sub-term
value: and/or

<django filter
function>

django field lookups (see
https://docs.djangoproject.com/en/3
.1/topics/db/queries/)

<django filter
function>

[...]

e.g. filters:
[{ link: or,
 origin__id__in: [1,5],
 destination__id__in: [1,5]
 },
{ link: and,
 amount__gt: 10,
amount__lt: 100
}]

Filter all flows,
where the origin-id is 1 or 5
or where the origin-id is 1 or 5
and amoung the remaining flows,
filter the flows with an amount between
10 and 100 (greater than 10 AND less
than 100).

materials filter and aggregate
by materials

ids list of material ids the flows should
contain, this includes flows with
descendant materials of given
ancestor materials

aggregate aggregates descendant materials to
given ancestor materials (attribute
“ids”), aggregates to top level
materials if attribute “‘ids” is empty
value: true/false

unalter
ed

list of material ids that are excluded
from the aggregation

e.g. materials: { ids: [1], unaltered: [10, 15], aggregate: true }

aggregation_
level

aggregate flows on
origin and
destination side from
actor level to given
level

origin aggregate origins of flows
value: activity/activitygroup,
stays on actor level if left empty

destination aggregate destinations of flows
value: activity/activitygroup,
stays on actor level if left empty

e.g. aggregation level: { origin: activity, destination: activitygroup }

https://docs.djangoproject.com/en/3.1/topics/db/queries/
https://docs.djangoproject.com/en/3.1/topics/db/queries/

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

36

The route to the flow filters is <domain>/api/casestudies/<id>/keyflows/<id>/flows. The filter

parameters shown in Table 5 can either be put in the query string as query parameters or in

the body with a POST request and the query parameter “GET” set to true.

In addition, the query parameter “strategy” can be added. The strategy-parameter defines

the id of a user strategy to show the flow data resulting from the impact of this strategy,

which has to be calculated by the Graph Walker algorithm beforehand. If the “strategy”

parameter is not set, the status quo data is shown.

Indicators

Indicators are used to “quantitatively assess the key waste flows [...] in relation to their

geographical context” (REPAiR, 2020). They sum up flow amounts spatially after filtering

the flows. Unlike the Flow Filters, the filter parameters are not solely passed by query

parameters. Instead, an indicator with filter settings has to be defined beforehand by

posting the definition to the route

 <domain>/api/casestudies/<id>/keyflows/<id>/flowindicators/.

The indicator definition is stored in the database. The corresponding model “FlowIndicator”

can be found in the file .\repair\apps\status_quo\models\indicators.py. Next to general meta

information the FlowIndicator holds information about its type.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

37

There are four different types of indicators at the moment:

• “IndicatorA” - the amount of a single flow filter

• “IndicatorAB” - the ratio between two separate flow filters

• “IndicatorInhabitants” - the amount per inhabitant

• “IndicatorArea” - the amount per area (ha)

The filter settings are held within an “IndicatorFlow”. Up to two IndicatorFlows can be set

to a single FlowIndicator, depending on the indicator type. Defining two IndicatorFlows is

only reasonable for the type “IndicatorAB”.

The name of the indicator type that is set to the FlowIndicator has to match the names of

the computation classes that are located in

.\repair\apps\status_quo\models\computation.py.

Having a defined indicator, the computation can be triggered by sending a request to the

route <domain>/api/casestudies/<id>/keyflows/<id>/flowindicators/<id>/compute with third

id being the id of the created indicator. All computations filter the flows first and aggregate

them based on the spatial settings. The indicator type-specific calculations are done last.

By default, the indicator computation is done for a single area, either the focus area or the

case study, whichever spatial reference is set to the FlowIndicator. To calculate the

indicator for specific areas, the IDs of the areas can be passed with the query parameter

“areas” to the computation route. To get a single value, the query parameter “aggregate”

has to be set to true. If the parameter “aggregate” is set to false, the response contains for

each area a separated amount. Similar to the Flow Filters, indicators can be calculated for a

user-defined strategy by setting the “strategy” query parameter to the id of the strategy.

Otherwise the data of the status quo is used for the calculation.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

38

Graph Walker

The Graph Walker calculates the impact of strategies on the status quo flows.

As the name suggests, the Graph Walker works on a graph representation of the flow data.

The actors are represented by vertices connected by edges representing the flows.

Therefore, the status quo data has to be translated into the so-called base graph. Every flow

of material between actors becomes a separate edge with the information about its

direction, material and the amount of material. The resulting graph is directed with parallel

edges (see figure 15).

Figure 15: Example graph for material flows between actors

There are no automatic triggers to build the base graph on change of data due to

performance reasons. The translation has to be triggered key flow-wise manually. This

should be done per key flow in preparation of the workshops when the status quo flow data

is not supposed to change anymore.

To trigger the build, a GET request has to be sent to

<domain>/api/casestudies/<id>/keyflows/<id>/build_graph/. After the graph has been built, it

is stored in a local graph file on the server named after the key flow and case study. The

previous base graph will be overwritten.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

39

Ideally, the graph is balanced. This means, that the sum the amounts of all incoming flows at

each node matches the sum of the amounts of the outgoing flows. If the graph is balanced,

the ratio between the input and output (called “balance factor”) is exactly 1.0 for each node,

except for sources, which have no in-flows, and for sinks, which have no out-flows.

In reality this is unlikely to achieve. The balance factor for each node is stored in the base

graph as it is needed later during the calculation of the strategy impacts.

With an already calculated base graph in place, the calculation of the impacts of a strategy

with a strategy_id can be triggered by sending a GET request to

<domain>/api/casestudies/<id>/keyflows/<id>/strategies/<strategy_id>/build_graph/.

To simplify the algorithm, the calculations of the solutions in the strategy are not done in

parallel at the same time but for one solution after the other. The order is determined by

the attribute priority of the SolutionInStrategy objects. The order can be set by the

workshop users by ordering the solutions with drag and drop. The same applies to the

solution parts within a solution. They are calculated in the order set by their priority

attribute. The priority is defined frontend-side by ordering the parts in the setup mode. The

order of the calculations has an impact on the results and should be considered when

defining the solution parts.

Before the actual calculation of a solution part begins, the data is prepared for the

calculation. The flows that will be changed directly, named implementation flows, are filtered

according to the settings of the FlowReference object behind the flow_reference attribute of

the solution part (see Table 5) and the implementation areas drawn by the users.

In the next step the graph walker algorithm figures out, how the implementation flows are

changed by the solution part.

There are six schemes available for the solution part

• Modify existing flow

• Shift origin of a flow

• Shift destination of a flow

• Create new flow

• Prepend flow

• Append flow.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

40

The information is encoded in the scheme attached to the solution part. A detailed

explanation of the definitions of the schemes and their effects is available in the Deliverable

2.5 (p. 45).

The change to the amounts of the implementation flows are specified by the value of the

ImplementationQuantity defined by the workshop user. The ImplementationQuestion

defines, if the changes are absolute or relative to the status quo amount of each

implementation flow.

Information about other changes of attributes (e.g. the material) of the implementation

flows is held by the FlowReference object related to the flow_changes attribute of the

solution part (see Table 5). The determined changes are applied to the edges which

represent the implementation flows in the base graph. New edges are added to the graph in

case when new flows were created.

Next, the changes need to be propagated through the graph. This is where the actual Graph

Walker algorithm comes into play. The Graph Walker algorithm only takes into account the

implementation flows and the affected flows. All other flows in the base graph are ignored.

The definitions of affected flows make the following traversal through the graph more

performant, because the number of nodes and edges are reduced to the relevant ones. In

addition, the definition of affected flows allows to specify, which flows and materials are

affected by a solution. For example, if in the graph in Figure 15: Example graph for material

flows between actors’ the plastic packaging of cucumbers is reduced, then the amount of

recycled and burned plastic will be reduced, but not the other waste fractions. Therefore,

the recycled and burned plastic can be marked as affected flows.

In a first run the Graph Walker traverses the graph in a breadth-first-search manner. It

starts from each implementation flow, starting at the target node of the implementation

flow (the implementation edge). When for example the amount of the implementation flow is

increased by 1.000 tons, the graph walker algorithm propagates this change of 1000 tons in

the graph.

When visiting a node, the targeted change of the implementation edge is distributed to the

outgoing flows. The 1000 tons are distributed to all out-flows of this nodes, that are affected

flows. The Graph Walker algorithm takes the balancing-factor (described above) into

account. This is continued until all nodes are visited.

Then, the algorithm goes “upstream” from the implementation edges, until all nodes are

visited in this direction.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

41

By default, the Graph Walker actually goes upstream first and downstream second, because

“demand dictates supply”. This is technically implemented in the Graph Walker algorithm

by temporarily changing the direction of the graph representation while propagating

changes upstream.

The algorithm attempts to keep the balance factors at all vertices intact while distributing

the changes upstream and downstream in a graph with circular loops. This might have the

effect, that the actual value at the implementation edge might mismatch the targeted value

after the first iteration of the algorithm. Therefore, in the next iteration the algorithm tries

to reduce the mismatch between the targeted change at the implementation edge and the

calculated change.

In each iteration, the graph will be traversed upstream and downstream again and the delta

to the targeted value is distributed in a similar way to the first iteration. This is done until

the mismatch is within a defined tolerance, or the maximum number of iterations is

exceeded.

After all implementation flows of all parts of the solutions are processed, the changes to the

base graph produced by the strategy are saved in the database. New flows are stored in the

FractionFlow table, with a relation to the strategy they are created by. Status quo flows

have no relation to any strategy. Changes to flows are stored in the StrategyFractionFlow

table. The StrategyFractionFlow holds all changes to attributes like the materials, processes

and the new amounts calculated for a strategy. To indicate, that an attribute is not changed

by the strategy, its value is set to NULL.

When the strategy is calculated, its results can be requested via the flow filter route (Flow

Filters) as well as via the indicator route (Indicators) of the API by passing the query

parameter “strategy” with the ID of the strategy.

3.2 Web frontend

The frontend of the GDSE serves as a view on the data in the server backend and enables

the interaction of the user with the data. It is implemented as a web site and can be rendered

in any modern browser that supports HTML5 and JavaScript ECMAScript 5. The

communication with the backend is performed with HTTP (see Data Access).

This chapter focuses on the technical details of the implementation of the frontend. How to

use the web frontend of the GDSE is described in detail in the Deliverable 2.5 (REPAiR,

2020) and here: Using the GDSE in Online-Workshops’)

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

42

Architecture of the web frontend

As mentioned in chapter Basic architecture the HTML templates for the web pages are

filled and served by the Django backend. During the project, it became clear this approach

is not dynamic enough on the client side. Big parts of the web pages need to be replaced

dynamically, based on the user input. To achieve that with client-side views, the frontend

received its own independent MVC (Model-View-Controller) implementation, Backbone.js.

This results in some unusual compromises like the mix of different template languages in

the same template. The router function remains solely in the backend.

Backbone.js is a JavaScript library with support of RESTful interfaces and suitable for the

implementation of single-page applications. In our case, every GDSE step (Study Area,

Status Quo, Targets, Strategy, Conclusion) is designed as a single-page.

The communication and the serialization/deserialization are realized with Backbone

models and collections. A model represents a single resource. Collections hold a number of

models of the same type, representing a list view of resources in the Rest-API. The basic

models and collections are adapted to the needs of the django backend (support for file

uploads, uploads of resources as forms).

Models and collections have to be allocated via the new-Operator and then changed or

deleted and synchronized with the Rest-API (see code sample in Figure 16). To simplify the

use, a tag and the IDs of the preceding resources can be passed instead of the complete URL.

The tags and corresponding URLs can be found in the .\repair\js\app-config.js (see Figure 17).

The URLs in the app-config.js have to match the URLs of the Django router (see Data Access).

this.stakeholderCategories = new GDSECollection([], {

 apiTag: 'stakeholderCategories',

 apiIds: [_this.caseStudyId]

});

[...]

_this.stakeholderCategories.create({name: name}, {

 success: _this.initStakeholders,

 error: _this.onError,

 wait: true});

Figure 16: Code sample - use of collections - creation of a stakeholder category .\repair\js\views\study-
area\stakeholders.js

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

43

/** urls to resources in api

* @name api

* @memberof module:config

*/

config.api = {

 base: '/api', // base Rest-API URL

 casestudies: '/api/casestudies/',

[...]

stakeholderCategories:'/api/casestudies/{0}/stakeholdercategories/',

 stakeholders:

'/api/casestudies/{0}/stakeholdercategories/{1}/stakeholders/',

[...]

};

Figure 17: Code sample - excerpt of routing config in .\repair\js\app-config.js

The communication with the backend is asynchronous to avoid blocking calls and keep the

web site responsive. For this purpose, success and error functions have to be defined and

passed to the calling function. They are called, when the asynchronous call is completed,

and the response arrives at the client again.

The Backbone views serve mostly as the Control of the MVC pattern. It listens to the user

input, interprets them and calls the model classes, other views and renders templates if

necessary. A basic view to derive custom views from is provided at

.\repair\js\views\common\baseview.js. It holds basic render functions and general auxiliary

functions.

The templates take the role of the View within the MVC. The template engine uses client-

side js-underscore. The underscore templates are wrapped in the HTML provided by Django,

and tagged as scripts (see code sample in Figure 18). To load a template into a view and to

render it, access the template via its id and get the inner html in order to pass it to the

template engine (see code sample in Figure 19). The resulting HTML can be put into existing

containers.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

44

<script type="text/template" id="conclusion-item-template">

<div class="row" style="height: 100%;">

 <div class="col-md-7 bordered" style="height: 100%;">

 <%= conclusion.get('text') %>

 </div>

 <div class="col-md-1 bordered" style="height: 100%; overflow: hidden;">

 <img class="bordered" src="<%= conclusion.get('image') %>" style="max-

width: 100%; cursor: pointer;">

 </div>

 <div class="col-md-2 bordered" style="height: 100%; overflow: hidden;">

 <label><%= section %></label>

 </div>

 <div class="col-md-2 bordered" style="height: 100%; overflow: hidden;">

 <label><%= conclusion.get('step') %></label>

 </div>

 <button name="remove" class="btn btn-warning square" title="remove

conclusion" style="position: absolute; right: 10px; top: 10px;">

 </button>

</div>

</script>

Figure 18: Code sample - embedded script of an underscore template inside the django template
.\repair\templates\conclusions\workshop.html

addConclusionItem: function(grid, conclusion){

 var _this = this,

 item = document.createElement('div'),

 html = document.getElementById('conclusion-item-template').innerHTML,

 template = _.template(html);

 item.innerHTML = template({

 conclusion: conclusion,

 section: this.sections.get(conclusion.get('section')).get('name')

 });

[...]

 grid.add(item);

[...]

}

Figure 19: Code sample - add a row showing a conclusion by rendering the template from code sample in
Figure 18 \repair\js\views\conclusions\conclusions.js

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

45

Figure 20: Two rendered conclusion rows in the GDSE as a result of code sample in Figure 19

Design

The design of the website is primarily defined by the HTML. Some of the styles of the HTML

documents are described inline but most general styles are outsourced to CSS-files located

in .\repair\static\css. The external stylesheets can either be imported in the header of the

Backbone views or inside the HTML files.

The most important stylesheet file is .\repair\static\css\base.less. It defines the basic

appearance of the web site. To be able to define reappearing attributes like the main colours

in variables, the basic styles are written in LESS, a dynamic pre-processor style sheet

language. Webpack is configured to compile the LESS-files to CSS with a less-loader to be

interpretable by the browser.

The GDSE website is designed to be responsive. Even though the GDSE is mainly used on

big touch screens with similar proportions during the workshops, its responsive web design

aims at supporting a variety of resolutions and devices such as desktop PCs and tablets (see

Figure 21).

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

46

The responsive design is realized with the JS/CSS/HTML library Bootstrap. Bootstrap ships

with its own collection of stylesheets and matching scripts. Bootstraps HTML layout is grid-

based and organized in rows and columns. Most of the elements of the GDSE pages follow

this grid pattern with breakpoints for medium resolutions such as in tablets. Below those

resolutions (<=768px) the layout breaks and columns are displayed vertically (see Figure

21).

The assignment of containers to the grid is done via class names. Same applies to the other

utilized Bootstrap elements like the navigation bars and buttons. The various GDSE dialogs

for user inputs and displaying messages are also built with Bootstrap and controlled by the

views. To avoid a generic look and to achieve a more unique appearance, the styles of the

Bootstrap containers are customized for the GDSE by overriding respectively extending

them with CSS files (e.g. .\repair\static\css\main-navbar.less)

The layout of the GDSE site follows the logic of the decision process with its five steps. The

basic page layout including the main menu is set by the basic template

.\repair\templates\base.html. Each step is implemented as a single page and can be accessed

via the corresponding item of the main menu. Every step is split into sub-steps, and are also

referred to as screens. The sub-steps are navigable via the side menu. The base.html only

provides the container for the side-menu and imports. Its items have to be filled in the

templates of the steps which extend the base.html. The icons used in the sidebar and in the

buttons are taken from the Bootstrap glyphicon collection and from the free version of Font

Awesome (https://fontawesome.com/).

Figure 21: Layout of same page at different resolutions. left: laptop with HiDPI screen (1440x900), right:
iPad (768x1024)

https://getbootstrap.com/
https://fontawesome.com/
https://fontawesome.com/

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

47

Switching between sub-steps is implemented as tabbed interfaces with Bootstrap. The

contents of the sub-steps are put in by the views into separate tab-containers on the same

page. Only the tab of the active sub-step is visible. Switching a sub-step in the side-menu

activates another tab and makes it visible while hiding the previously active tab. This way

switching tabs is very fast as no content has to be loaded on change. The downside is that

the whole page has to be rendered with all sub-steps and their data simultaneously even if

some of the sub-steps will not be accessed.

JS Entry Points

The main scripts for each page are located at .\repair\js. The templates of the pages import

their associated script which are named similarly e.g. the page <domain>/study-area imports

repair/js/study-area.js .

These scripts serve as entry points for all subsequent scripts. The main script loads data,

libraries and stylesheets which are shared by views and finally calls the views, usually the

views that control a single sub-step. The views themselves load further data and libraries

and call further views on demand like visualizations. The imports within the scripts are

realized with require.js (https://requirejs.org/).

Figure 22: Entry point to the JS scripts on a page

In addition, the file .\repair\js\base.js has to be imported by either the step-templates or by

the entry points. The script base.js is loading all basic requirements and stylesheets and is

overriding functions as needed by other entry points.

https://requirejs.org/

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

48

Sessions

The Django session usually only contains the session ID, the CSRF token and the language

code. The user is identified by the session id after logging in. The session is stored in cookies.

Django is configured to require a token for POST requests to protect the web site against

CSRF attacks where an attacker rides the session of the logged-in user. Therefore, the

token has to be put into all POST forms within the Django templates with the tag {%

csrf_token %}. Otherwise the POST requests would be rejected. Backbone doesn't support

CSRF by default. The underlying AJAX has to be set up to send the token inside the header.

This is implemented in the base.js script (see JS Entry Points). It has to be imported to get

the persistence methods of the Backbone models to work with the backend.

The more complex inputs of users like strategies and solutions have corresponding models

on the backend side to store them in the database. To make it more flexible, additional

session information can be added in the JS scripts dynamically as attributes of the session

object without the need of making changes to the backend. The session can be accessed via

the config object (.\repair\js\app-config.js). Amongst other things this is used to store the

selected case study, the current mode (setup or workshop mode) and the layers the user

selected on the study area map.

The session can be persisted by posting the attributes as a JSON to the route

<domain>/session. They are stored serialized as a JSON string in the Profile of the user. The

same route is used to retrieve the stored session attributes. The requests can be called with

the functions fetch and save of the session object. The persistence of the session was

implemented to allow cross-platform sessions. This way the user can keep his settings even

when switching between different devices.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

49

Visualizations

While the data is stored in and calculated, filtered and aggregated on demand by the

backend, the frontend is responsible for the visualization of the data. This includes

displaying maps and layers, generating bar charts for the indicators and Sankey diagrams

for the flow data.

Most of the maps in the project, such as the study area map and the indicator map are

realized with the JavaScript library OpenLayers that uses an HTML5 canvas for drawing the

data. It was extended to meet the requirements of the GDSE with simplified feature-, layer-

and geometry-management (.\repair\js\visualizations\map.js).

An exception is the map used to visualize the material flows spatially. It is based on the

JavaScript library Leaflet. Instead of utilizing a canvas, it draws the background tiles as

images and uses SVG-containers as overlays. The basics of the visualization of the flows on

a map were developed for the GDSE as part of the master thesis on the development of a

visualization concept fot the representation of geo-referenced flows by Jochim (2018).

To integrate the code implemented as part of the master thesis into the GDSE, some

adaptations were made (.\repair\js\visualizations\flowmap.js). The material flows between

the same origin and destination locations were originally displayed as parallel flows with

common arrowheads indicating the direction of the flow (see figure 23). While applying this

to sample data the arrowhead proved to be hardly visible in case of flows with relatively

small amounts. The bundled coloured materials were also hardly distinguishable and

difficult to hit with the mouse cursor to show the tooltip. This was changed into bundling

the materials by default and listing them in detail in the tooltip when hovering the bundled

flow. On demand, the materials can be visualized as easier distinguishable separate but not

parallel lines with a bigger bounding box (see figure 24). The directions of the flows are

visualized as animations moving from origin to destination. Furthermore, the flow map was

extended to display stocks as pie charts on the map and to cluster actors based on the zoom

level.

https://openlayers.org/
https://leafletjs.com/

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

50

Figure 23: Visualization of flows with OSM background map (Jochim 2018)

Figure 24: Visualization of flows in the GDSE with overlay controls

The flow map is combined with a Sankey diagram in a reusable Backbone View to be found

at .\repair\js\views\common\flows.js. It registers event listeners to the diagram, requests

specific filtered flows from the backend on click and displays them in the flow map.

Like most of the diagrams in the GDSE, the Sankey diagram is realized with the library D3.js

(https://d3js.org/. To be able to display circular flows, it is based on the D3 circular Sankey

https://d3js.org/

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

51

extension taken from https://gist.github.com/cfergus/3956043. The further extended

implementation for the GDSE (.\js\visualizations\Sankey.js) features a zoomable and

movable container, selectable flows, customized tooltips and customizable layout. A

screenshot of flows rendered with the GDSE Sankey implementation and an overlay to

control the layout can be seen in Figure 25.

Figure 25: Sankey diagram with overlay controls

All visualizations support touch control. Like in the rest of the website most elements are

touch-enabled by default by the browser translating the touch gestures like dragging and

tapping to mouse inputs. Some of the default interactive elements like buttons and

checkboxes had to be upscaled via CSS to be easily pressable. OpenLayers and Leaflet have

touch support for more elaborate touch gestures already built in. Only a few adaptations

had to be made.

To make HTML containers draggable by touch or mouse inside a grid layout, the JavaScript

library muuri (https://muuri.dev/) was used. An example is shown in Figure 26.

https://gist.github.com/cfergus/3956043
https://muuri.dev/
https://muuri.dev/

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

52

Figure 26: Muuri container, draggable and movable by touch in the GDSE “Ranking Objectives”

3.3 Internationalization

REPAiR is an international project. The workshops take place in different countries across

Europe. So, the content of the GDSE has to be delivered to a potentially non-English

speaking audience.

The language can be changed client-side in the browser and is stored in the session object

with a language code like “nl”. The currently available languages correspond to the

countries, the workshops take place in: Dutch (“nl”), Polish (“pl”), Hungarian (“hu”), Italian

(“it”), German (“de”) and English (“en-us”) as the default language. To support the

internationalization, preparations have to be made while implementing the backend and

frontend modules.

All texts in the code should be written in English first because the default language is set to

English. To mark the strings that are potentially visible to the user for translation, they have

to be wrapped in special functions. Those functions or annotations depend on the

programming language as shown in Table 6.

Table 6: Annotations to mark strings to be translated and the imports required to use the annotations in the

different programming/markup languages used in the project

LANGUAGE REQUIRED IMPORT ANNOTATION

HTML {% load i18n %} {% trans “MyString” %}

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

53

Python from django.utils.translation import ugettext
as _

_(“MyString”)

JavaScript - gettext(“MyString”)

If the template engine or the interpreter comes along an annotated string at runtime, it

looks the string up in a file containing all translations corresponding to the current language

code of the session. If a not-empty entry is found, the string will be replaced by it.

To create a language file, you have to execute:

python manage.py makemessages -d djangojs -l <i18n code> -e html,js,py

where <i18n code> has to be replaced by an actual language code like “hu” (without

brackets). The command will parse all annotated strings and collect them in the file

djangojs.po in the directory .\repair\locale\<i18n code>\LC_MESSAGES.

The file is human readable, so the input of the translations can be done with a text editor.

There is also specialized software like Poedit (https://poedit.net/) to do this. The translated

file has to remain in the exact same spot where it was created to be found by the running

system. The translation should be done directly in this file, or - if the translation is done

externally - simply overwrite the djangojs.po file afterwards. Then the changes need to be

pushed and merged into the productive branch.

Not only texts but numbers should be localized, because on German you write 1.234,56 €,

while in English, you would write 1,234.56 €. The backend provides numbers in English

number format. To localize the numbers in the frontend views to the language settings, the

“format” function of the base view (.\repaird\js\views\common\baseview.js) can be used.

Alternatively, the numbers can be localized by calling the toLocaleString function with the

language code as an argument e.g. value.toLocaleString(session.language).

4 Data Management

4.1 Overview of the required data and user input

There are three different kind of data in the GDSE to consider:

• Data that is generated outside of the GDSE and uploaded on the GDSE for the

purpose of its exploration and visualization;

https://poedit.net/

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

54

• Data that is generated outside of the GDSE but gets analysed using the GDSE this

way providing new insights and producing new datasets;

• Data that is collected using the GDSE by allowing user input.

Therefore, the data can be entered into the GDSE by:

• a data captain who prepares data for the analysis in the GDSE;

• a specialized researcher, e.g. LCA expert who collects and analyses data outside

the GDSE;

• a PULL leader in preparation of the workshop;

• a workshop participant who enters the data during the workshop as asked by the

workshop moderator.

Types of data that are required to be uploaded into the GDSE are described here below

following the five steps of the GDSE.

Table 7: Overview of the required data and user input

GDSE Step &

Substep

Study Area: Maps

Data purpose Maps are meant for collecting and visualizing static data about the study area

which means that the data portrayed here does not represent processes,

scenarios or relationships but a fixed state of elements related to the social,

environmental and infrastructural context of the study area.

During the workshop participants are allowed to explore different map layers in

various combinations, zoom in and out to the chosen scale.

Data type Geospatial data

Data formats WMS Service

Data upload

procedure

Data is uploaded directly on GeoServer as explained in the section 4.4.

Integrating Geodata and Maps via WMS/WFS

Maps can be grouped in categories and interactively rearranged in order by the

interface users.

The system also allows adding publicly available WMS/WFS layers that are

useful as e.g. background maps.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

55

Special

requirements

Maps need to be provided along with the layer style and a relevant legend.

Updating data Maps can be updated by reuploading them on the GeoServer and again loading

into the GDSE

GDSE Step &

Substep

Study Area: Charts

Data purpose Charts are meant to display visual information about the study area that is not

available in the form of maps

Data type png, gif, jpeg

Data upload

procedure

Images are uploaded directly through the user interface by selecting +Chart

button and giving a relevant name to the image. Images can be grouped in

Categories.

Special

requirements

None

Updating data Charts can be updated by removing the image and uploading a new one

GDSE Step &

Substep

Study Area: Stakeholders

Data purpose A list of stakeholders organized into categories and their descriptions. The list is

later used to select stakeholders that can be involved in the implementation of

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

56

specific eco-innovative solutions.

Data type Text

Data formats -

Data upload

procedure

Typed using user interface, cannot be uploaded in bulk

Special

requirements

None

Updating data Stakeholders can be updated by editing the text

GDSE Step &

Substep

Study Area: Key flows

Data purpose The GDSE distinguishes key flows, that are subsets of all possible

waste/resource materials. Key flows help to reduce data size and look at specific

flows in an isolated manner.

Therefore, this substep requires a detailed description of the available key flows

- their definitions, reasons for selecting specifically these key flows, any related

supporting data sources, images, graphs or even videos.

Data type Formatted text, images, videos, links and/or tables

Data formats Text or URL

Data upload

procedure

Typed using user interface, images, videos and links are provided as URLs and

therefore must be already available online beforehand

Special

requirements

None

Updating data Data on key flows can be updated by editing the text

GDSE Step &

Substep

Status Quo: Flows

Data purpose Flows represent process data and dynamic relationships between actors inside

and beyond the study area. Basically, flows in the GDSE represent material

flows that have happened in a single year. Actors that participate in material

flows can be either individual companies, or groups of actors (e.g households or

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

57

small companies) in a geographical area.

Flows can represent all types of material flows: from extraction sites to

production, to consumption, to disposal and circular flows.

Data type Data tables and geospatial data

Data formats TSV, CSV, XLSX

Data upload

procedure

Detailed data upload and preparation procedure is available in the Appendix:

Special

requirements

The data should include flows that have happened in a single calendar year.

Appendix lists all the additional special requirements to the dataset.

Updating data Updating flow data is explained in section 4.2 Material Flow Data preparation and

Data Entry

GDSE Step &

Substep

Status Quo: Flow Assessment

Data purpose Indicators are calculated on the fly by the system based on the provided data.

However, inhabitant data supporting the calculation of indicators must be

provided beforehand.

Data type Indicators: user input

Inhabitants: geospatial data

Data formats Inhabitants: CSV, TSV or XLSX with geometrical data provided as WKT

Data upload

procedure

Indicators are defined using the user interface controls.

Number of inhabitants per administrative unit is uploaded together with the

administrative units as explained in the Appendix, table Areas.

Special

requirements

Data on number of inhabitants should be from the same year as the other

uploaded data, especially material flows.

Updating data Indicators can be updated through user interface

Inhabitants can be updated by reuploading the Area table with the same unique

area codes

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

58

GDSE Step &

Substep

Status Quo: Wastescapes

Data purpose The module is in principle identical to the Study Area: Maps module, even

though layers can be loaded here independently. The purpose of these map

layers is to portray wastescapes in particular.

Data type Geospatial data

Data formats WMS Service

Data upload

procedure

Data is uploaded directly on GeoServer as explained in the section 4.4.

Integrating Geodata and Maps via WMS/WFS

Maps can be grouped in categories & interactively rearranged in order by the

interface users.

The system also allows adding publicly available WMS/WFS layers that are

useful as e.g. background maps.

Special

requirements

Maps need to be provided along with the layer style and a relevant legend.

Updating data Maps can be updated by reuploading them on the GeoServer and again loading

into the GDSE

GDSE Step &

Substep

Status Quo: Description

Data purpose Information on the Status quo can also be uploaded in a form of a report that can

be consulted during the workshop. It can contain additional information, next to

the maps and flows diagrams that are available in the Status Quo section.

Data type Report

Data formats PDF

Data upload

procedure

Uploaded using user interface

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

59

Special

requirements

None

Updating data Reports can be updated by reuploading the files

GDSE Step &

Substep

Status Quo: Objectives

Data purpose Listing all challenges and objectives that are related to the specific key flows or

span the selected study area.

During the workshop, the objectives will be ranked according to their

importance to the group of stakeholders, converted into indicator values and

evaluated after the simulation of a chosen strategy.

Data type Text

Data formats -

Data upload

procedure

Typed using user interface, cannot be uploaded in bulk

Special

requirements

None

Updating data Objectives can be updated by editing the text

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

60

GDSE Step &
Substep

Targets: Ranking Objectives

Data purpose Objectives are ranked during the workshop by the workshop participants from
less to most important ones for the region (according to their opinion).

Data type Order of objectives

Data formats -

Data upload

procedure

Workshop participants provide their ranking using the user interface guided by

the workshop moderator

Special

requirements

None

Updating data Objectives are ranked during the workshop by the participants and shouldn’t be

updated after the workshop

GDSE Step &

Substep

Targets: Flow Targets

Data purpose Objectives from the Status Quo: Objectives substep are related with the

indicators from the Status Quo: Flow Indicators substep by the workshop

participants. In addition, they are required to set measurable targets for the

indicator.

Data type Relations, text and numbers

Data formats -

Data upload

procedure

Workshop participants enter the data using the user interface guided by the

workshop moderator

Special

requirements

None

Updating data Flow Targets are set during the workshop by the participants and shouldn’t be

updated after the workshop

GDSE Step &

Substep

Strategy: Solutions

Data purpose The catalogue of the eco-innovative solutions that has been developed during

the previous workshop steps is uploaded in the GDSE for the purpose of

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

61

strategy building and simulation of changes.

Data type Text and images

Data formats Text, JPEG, PNG

Data upload

procedure

Textual descriptions and supporting images are uploaded using the user

interface

Special

requirements

Each EIS requires 3 supporting images: 1) Diagram of the current process; 2)

Diagram of the proposed process; 3) System diagram of the involved economic

activities and flows between them

Updating data Solutions can be updated by editing the texts and reuploading the images

GDSE Step &

Substep

Strategy: Solution Logic

Data purpose In order to be able to run numerical simulation of the solution effects on the

system, solutions need to be converted into a set of rules in relation to the

material flows.

Data type Custom data structure

Data formats -

Data upload

procedure

Data is uploaded following the guidance of the user interface as explained in

Deliverable 2.5, section 4.4. Strategy

Special

requirements

Explained in Deliverable 2.5, section 4.4. Strategy

Updating data Solution Logic can be updated through the user interface

GDSE Step &

Substep

Strategy: Define Strategy

Data purpose Strategies are created by the participants during the workshops and consist of

multiple EIS implemented in chosen geographical areas. The strategies are later

simulated to check how they would affect the current material flows and how

the effect would look in the bigger picture and contribute to the earlier set

targets.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

62

Data type Geospatial, text and numerical

Data formats -

Data upload

procedure

Workshops participants select EIS, answer parametric questions, draw polygons

on the map and enter notes using the user interface guided by the workshop

moderator

Special

requirements

None

Updating data Strategies are created during the workshop by the participants and shouldn’t be

updated after the workshop

GDSE Step &

Substep

Strategy: Modified Flows & Flow Target Control

Data purpose Both substeps provide simulation results in relation to previously entered data

Data type Numerical data, can be exported into tables

Data formats Relational database tables

Data upload

procedure

Data is generated by building a graph and clicking “Calculate” button in the

GDSE

Special

requirements

-

Updating data Data gets updated automatically after the user starts a new calculation for it’s

strategy; this does not affect calculations done by the other users

GDSE Step &

Substep

Conclusions: Notepad

Data purpose Organizing Consensus Levels & Organizing Sections are two groups of

organizational headers that a PULL leader can use to analyze and expose the

results of PULL process among the different participant groups after the last

workshop

Data type Text

Data formats -

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

63

Data upload

procedure

Typed using user interface, cannot be uploaded in bulk

Special

requirements

None

Updating data Notepad can be updated by editing the text through the user interface

GDSE Step &

Substep

Conclusions: Sustainability

Data purpose Sustainability report provides deeper sustainability-related insights into the EIS

that have been generated outside of the GDSE

Data type Report

Data formats PDF

Data upload

procedure

Uploaded using user interface

Special

requirements

None

Updating data Reports can be updated by reuploading

GDSE Step &

Substep

Conclusions: Workshop mode

Data purpose All substeps of the Workshop mode bring the results and participant data from

different participant groups into a single place and allow to explore the data

using a series of visualisations

Data type Textual, numerical and relational data, can be exported into tables

Data formats Relational database tables

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

64

Data upload

procedure

Data is automatically generated in the GDSE

Special

requirements

-

Updating data Data is automatically updated by the GDSE after any of the input data is

changed by the users

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

65

GDSE Step &

Substep

General: Focus Area

Data purpose A smaller specific area that is not necessarily coincident with any official

administrative units can be chosen for focused analysis. The chosen area

appears throughout the GDSE process as a quick selection.

Data type Geospatial

Data formats GEOJSON

Data upload

procedure

Uploaded by a data captain in User Area -> Data Entry -> Bulk Upload -> Case Study

Related

Special

requirements

Coordinates must be provided in WGS84

Updating data Focus Area can be updated by copying a new geojson file or manually changing

the coordinates

GDSE Step &

Substep

General: Case study Region

Data purpose Similar to a Focus Area, Case study Region is also a shortcut area that can be

chosen for focused analysis. The chosen area appears throughout the GDSE

process as a quick selection.

Data type Geospatial

Data formats GEOJSON

Data upload

procedure

Uploaded by a data captain in User Area -> Data Entry -> Bulk Upload -> Case Study

Related

Special

requirements

Coordinates must be provided in WGS84, Region should include the Focus Area

Updating data Case study Region can be updated by copying a new geojson file or manually

changing the coordinates

4.2 Material Flow Data preparation and Data Entry

Material Flow data requires special treatment and preparation before it can be uploaded

into the GDSE. The flow data is the basis for the simulations of effects caused by CE

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

66

strategies built during the PULL workshops and therefore needs to be prepared and

entered into the GDSE following a predefined structure and semantics.

Material Flow data can be entered into the GDSE only by a Data Captain or an Admin. The

entry happens through a Data Entry module which can be found in the User Area menu.

Bulk Upload

Tables of Material Flow data are uploaded in bulk through user interface. The GDSE then

translates them into relational database tables. The structure and content of the required

tables is explained in detail in the Appendix:

Each table has a specific template to be followed, templates can be downloaded by pressing

a “template” button

After uploading a template, the log on the right will either confirm a successful upload or

return back an error that prevented the data to be uploaded. In case of an error, no data

from that table is uploaded. Errors that relate to the file structure (e.g. missing columns) are

returned in the log, while errors related to data content (rows) also return an excel file that

explains, in which rows an error has occurred. Only the first encountered error is returned

even if there are other errors still remaining in the file.

Figure 27: An example of a successful table upload (green) and an error (red).

Each table has a container with the following elements:

• API pointer which allows to see the uploaded data;

• Template download button

• File chooser & Upload button

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

67

• Counter of the total available data points in that table for the selected case study

and key flow

• Status bar which appears after uploading and announces how many new data

point instances have been created and how many were updated

Each table has one or multiple columns that represent a unique entry. The key is unique only

for the specific combination of case study and key flow. Every time after a new table is

uploaded, the script first of all checks, if a data point with that unique already exists, and if

it does, updates the remaining attributes, otherwise creates a new instance. The key

columns are indicated in the templates with a star sign (*). The status bar that appears after

a successful upload, indicates how many entries have been updated and how many new

instances have been created.

Edit Actors / Flows

It is possible to find and edit the uploaded data points and add new ones using a dedicated

user interface. Initially meant as a data collection tool, later the user interface became

deprecated due to the tedious work that would need to be done by a researcher.

Nevertheless, the detailed interface proves to be useful, when small adjustments need to

be made to the data points. Additionally, it serves as a data overview and exploration tool

that is useful for the identification of errors in the uploaded data.

Data Entry tab allows having an overview of all available activity groups, activities and

actors. Selecting an actor allows exploring and editing all actor properties that are

associated with it. In/Out Flows shows, which material flows and stocks the actor

participates in and allows to edit any of the available fields.

Flow view tab is identical to the Status Quo: Flows subset accessible by anybody using the

GDSE, however, allows quicker access to the filters and does not allow saving views. The

tab allows querying the different data attributes and visualising them on an interactive

Sankey diagram enhanced by a Sankey map.

Edit Materials

Every Material flow can be composed of one or multiple materials. However, the material

itself can often be composed of multiple components (e.g. concrete is composed of sand and

cement) and make parts of other materials or products. Especially in case of waste flows,

material composition is often ambiguous and does not have strictly defined semantics and

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

68

level of detail. Therefore, a GDSE data captain is allowed to define their own material

hierarchy that best fits the uploaded data.

Material hierarchy allows arranging materials in a tree-like structure, where each node can

belong to only one other node and may or may not have siblings and may or may not have

children. Material hierarchy can be edited by uploading a material table in Bulk Upload or

by manually adjusting the names of materials in Material tree.

Nodes of the material tree that are already associated with a material flow cannot be

deleted, however, their names can be edited.

The counter after each node shows, how many flows are associated with the material

directly vs. how many flows are associated with the children of the material.

Material tree does not need to be balanced and is allowed to have more than one stem node.

Figure 28: An example of a material hierarchy displayed in a tree-like structure

Delete AS-MFA data

Since no system is implemented to provide a quick and easy “undo” of data removal, deleting

material flow data in bulk is not possible through the user interface. Only system admin is

able to do that using an SQL query directly in the database. The SQL query is arranged into

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

69

separate SQL queries for each table. This the system admin can decide, which tables are

cleared and which remain.

SQL queries allow clearing the data of only one selected key flow within one selected case

study.

If any of the solutions and/or strategies have been created using the materials or activities

already in the AS-MFA, those solutions and strategies will have to be deleted first using the

same SQL query for deleting the data.

4.3 Exporting Data

The GDSE serves not only as a data visualisation platform, but also a platform to do data

analysis, combine and filter datasets, and collect stakeholder input. Therefore, it allows

exporting datasets that can later be used in different specialized data analysis software, e.g.

GIS data analysis or LCA software. The data export is not targeted to any specific software

and therefore provides the most system-agnostic data structure and data format.

Exporting data directly from the user interface

Portions of the material flow data can be exported using the user interface. All modules that

allow displaying a Sankey diagram, allow the user to download the data behind the

displayed Sankey. Data content can be adjusted by using the associated filters or views.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

70

Figure 29: Red square indicates the button that allows downloading data which is visible in the displayed
Sankey diagram.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

71

The aggregation level of the data depends on the display level as explained in the table

below.

Table 8: The aggregation level of the data depends on the display level

Display
level

Data export columns

origin origin_
code

origin_
wkt

destination destination
_code

destination
_wkt

amount
(t/year)

composition

Activity
Group

Activity
Group
name

NACE
letter

n/a Activity
Group

NACE
letter

n/a t n/a

Activity Activity
name

NACE
code

n/a Activity
name

NACE
code

n/a t n/a

Actor Actor
name

Actor ID Actor
location

Actor
name

Actor ID Actor
location

t Flow
compositi
on

The same data export option is also available for the Sankey diagrams that display, how the

simulated strategy affects material flows. The user can select to download status quo data,

status of the modified flows or only the difference flows. In case of the difference compared

to status quo, increased flows are displayed with a ¨+¨ sign, while decreased flows are

displayed with a ¨-¨sign.

Exporting data from the database

The rest of the data does not have a user interface for export and requires a targeted SQL

query.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

72

4.4 Integrating Geodata and Maps via WMS/WFS

The GDSE step ‘Study Area’ has a sub-step or screen called ‘Maps’ that shows spatial

information about a particular study area. This sub-step features an interactive web

mapping interface that shows spatial information as categorized web maps. Web maps

consist of web mapping services (WMS/WFS) that can be case-study-specific (created,

loaded and/or uploaded by Data Captains, and published using GeoServer) or existing

external WMS or WFS map services (which are accessible through the URL of a website

providing such services (e.g., OpenStreetMap, Leaflet, OpenLayers, Google Maps), even if

these are password-protected.

To compose maps (i.e., arrange map layers) in this ‘Maps’ environment, the setup mode user

can create map categories and add layers to a category by clicking on the “+ Layer” button

(see figure 31). Next, a window appears prompting the user to select a map layer from a

number of web map services and the GDSE’s dedicated GeoServer (which for REPAiR is

accessible via this URL: https://GeoServer.h2020repair.bk.tudelft.nl/), which in turn

contains PULL-case-specific map layers (Figure 30), and configure the import settings for

this layer.

Figure 30: Adding a map layer to a category from the GDSE GeoServer.

Data Captains are responsible for uploading all the spatial layers with their appropriate

styles on the GeoServer using the OSF workflow described in detail in the document

available at this URL:

https://mfr.osf.io/render?url=https://osf.io/gr762/?direct%26mode=render%26action=d

ownload%26mode=render

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

73

The spatial data layers, which can be vector (e.g. ESRI SHP data format) or raster layers (e.g.

GeoTIFF), must be first prepared before they can be uploaded onto the GDSE. The REPAiR

Data Management Plan (DMP, page 13) shows guidelines on how to prepare SHP layers.

Most important guidelines for SHP files are:

• A SHP layer must have a logical name, which clearly identifies what is being

portrayed. See DMP for details on naming files (e.g., using “_” instead of spaces and

using no special characters, et cetera.

• A SHP layer file name should be written using English language words.

• All SHP layers must share the same coordinate system: WGS84.

• Each SHP file must be accompanied by one style SLD file which specifies layer

display and symbology for legends. SLD files can be generated using QGIS or

ArcGIS.

• This SLD file should share the same layer file name and has .sld as an extension.

Uploading spatial data layers to the Open Science Framework (OSF)

REPAiR utilizes the OSF as the cloud repository for spatial data layers, and the main

connection with the GeoServer web mapping platform, which is used to publish case-

specific spatial information. For the case of REPAiR, spatial layers are uploaded to OSF,

which places them on our REPAiR server in TU Delft. This way the layers are available for

publishing on the GeoServer and that way available in the GDSE.

The OSF Data Platform and the GeoServer Workspace are linked through Nextcloud

running as a cloud service on the TU Delft Server. The Nextcloud is integrated into OSF as

an external storage. Data uploaded to the according folder in OSF are automatically

transferred to the Nextcloud on the TU Delft Server. The GeoServer shares a common

workspace with the Nextcloud, so that the uploaded shapefiles are accessible for the

GeoServer. This is achieved by running Nextcloud and GeoServer as docker-containers

which are started together by docker-compose.

 OSF accounts must be created for each case study. Case-specific folders are created on the

OSF platform, to hold spatial data layers that are uploaded.

Below the main steps for uploading spatial layers to OSF:

• Go to URL https://osf.io and log in with your credentials

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

74

• In your specific case study folder, find folder “Spatial_data” and storage provider

‘ownCloud’:

E.g. WasteREPAiR > Amsterdam > spatial_data > ownCloud: amsterdam

• Find a folder called T3.1_Study_Area, it has 2 subfolders: “shp” and “sld”

• “Shp” folder is for uploading all your shapefiles - please, do not create any

subfolders, rather organise your files by giving them meaningful names (e.g. a

keyword as the first word if they all belong to the same map)

• “Sld” folder is for uploading all your style files, do not create any subfolders there

either.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

75

Publishing a spatial layer in REPAiR’s GeoServer

Once the files are uploaded into the TU Delft server they need to be published in the

GeoServer. Users must have GeoServer credentials to be able to publish uploaded spatial

data layers.

• Go to URL https://GeoServer.h2020repair.bk.tudelft.nl/GeoServer/web/

• Sign in with your GeoServer credentials

• <Uploaded spatial layers are now available for fetching here. Find a case study by

clicking on ‘Stores’ on the left hand side panel. Type must be ‘Directory of spatial

files (shapefiles)’. You will upload and publish new layers to this store.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

76

• On the left-hand side panel, click on ‘Layers’ to view all available layers for
publishing. Next, then click on ‘Add a new layer’:

• On ‘Add layer from’, a drop-down menu shows available stores, choose an

adequate destination store.

• Select the layer to be published. Click on ‘Publish’.

• Edit the layer attributes where required. Basic Resource Info, Keywords,

Metadata links, Coordinate Reference Systems, Bounding Boxes.

• Input is required on ‘Bounding Boxes’.

On ‘Native Bounding Box’, choose ‘Compute from data’

On ‘Lat/’Lon Bounding Box, choose ‘Compute from native bounds’

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

77

• Now the layer is published but it still does not have a style associated with it. On

the left panel, click ‘Styles’ to see all styles available. We want to upload a style

which is associated with an SLD file. Click on ‘Add a new style’. Choose

Workspace ‘Amsterdam’.

• On ‘Style Content’ click on ‘Choose File’ and navigate to the target SLD. Click on

‘Upload’.

‘Name of Style’ and ‘Style Editor’ get automatically filled out.

• Under ‘Legend’, click on ‘Preview legend’ to preview the style’s legend. The legend

should appear right under ‘Legend’. Click ‘Apply’ to save changes to the style.

• Now the new style needs to be associated with the right layer. Click on tab

‘Publishing’ to associate the style with a previously published layer. You will see a

list of published layers. Select the target layer by checking options ‘Default’ and

‘Associated’ on the target layer.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

78

• Click ‘Apply’ to save. Tab ‘Layer Preview’ allows you to visualize the layer with the

associated style. If nothing appears on this tab, make sure you allow all scripts on

this site in this browser’s tab.

• Click ‘Submit’ to complete the upload. The new style will appear on available

styles in the given Store.

Loading layers in the GDSE

Now all your layers are available for display in the GDSE. Below the steps to compose maps

using the recently published spatial data layers, and the desired existing web services.

• In the top right corner choose “Setup” mode and in the top left menu “Study Area”

step

• Click on “Add Category” to create a new category for your maps (one category

consists of multiple layers, it is up to you how to organise them)

• When you select a category a button +Layer will appear for adding spatial layers to it

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

79

• Select layers that you want to add

• You can reorder the layers by dragging and dropping and selecting the checkboxes

for their inclusion in the Workshop mode

After adding or changing WMS-Services, the “Refresh Services” button must be pressed in

the setup mode to update the list of available layers, as shown in the screenshot of Figure

31 below.

Figure 31: Adding an external WMS or WFS layer service in the Study Area step.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

80

4.5 Open Data Policy and Restrictions: User Management and
Access Rights

The REPAiR project has been part of the H2020 Open Science Pilot which requires all

project data and results to be “as open as possible, as closed as necessary”. However, data

from the waste management companies and governmental waste divisions is considered

sensitive and confidential data and therefore got entrusted to the REPAiR consortium only

under strict confidentiality agreements. To be able to comply with the confidentiality

agreements and avoid accidental data leakage, the GDSE does not have public access and

every GDSE user is required to login using a username and password.

There are five groups of users available that are allowed to access different modules of

GDSE. The table below gives an overview of the User roles and available groups of

permissions.

In addition to the assigned roles some users may have a “Superuser status” which means

that they are admin users. This status designates that the user has all permissions without

explicitly assigning them.

Table 9: User Management and Access Rights

Permission Admin Data
Captain

Pull
Leader

Researche
r

Workshop
Participan
t

Create users, assign case studies and user
rights

✓ ✓

Create and delete case studies ✓

Add key flows ✓ ✓

Access Admin Area ✓ ✓

Access Setup Mode ✓ ✓ ✓

Access Workshop Mode ✓ ✓ ✓ ✓ ✓

Modify solutions ✓ ✓

Create strategies ✓ ✓ ✓ ✓

View conclusions ✓ ✓ ✓

Add notes to conclusions ✓ ✓ ✓

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

81

Every user is granted access to one or more case studies and has the listed permissions only

for those designated case studies. Only superusers are allowed to assign case studies to the

other users. This way it is possible to control who is able to view the sensitive data.

User’s responsibility

Users who are granted the access take the responsibility for keeping their password safe

and not sharing it with the other people within or outside of the consortium as GDSE does

not collect any user statistics.

User rights can be added and removed by the admin user who has access to the Admin Area.

Workshop mode

Additional level of data confidentiality protection is created by allowing users that can

access setup mode to choose to anonymize actors of the material flows while the chosen

views are displayed in the workshop mode. The choice can be made per created view by

selecting the checkbox. If the checkbox is selected, the view in

workshop mode anonymizes all actors for all users both in Status Quo as in the Modified

Flows module.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

82

5 Outlook of possible further development

Refactoring

There still remain relics of early stages of the development in the code that should be

removed for the sake of clarity. These include the Activity2Activity and Group2Group

models that are not used in production anymore.

The FractionFlows mentioned in chapter Data Structure de facto replace the Actor2Actor

and ActorStock models. Removing the old structure that is still in use in parallel is expected

to be a rather laborious task, concerning the bulk upload, the API routes and several models.

Changing the models might also have a heavy impact on existing data in the database.

Rest API

The triggers to build base and strategy graphs are posted to the API. The frontend waits for

the response to this request to find out when the backend has finished building the

calculations. As this can take a long time, timeouts might occur in the frontend leading to

confusing error messages. There also is no detailed information about the status of the

calculations available via the API.

A better solution would be to post the request without waiting for a response and to acquire

status information over a socket connection between frontend and backend. In addition, a

logger should to be implemented in the backend keeping track of the progress of the

calculations.

There is an option to anonymize the actor names in the backend. However, this is not a real

anonymization. The backend still serves the names but they are hidden in the frontend. An

experienced user could read the names from the network traffic in the developer tools in

the browser. Real anonymization in the backend is advised for future development.

Performance

The filtering of flows and the strategy calculation including the Graph Walker algorithm are

the most time-consuming operations in the backend. They are already fairly optimized but

there is still a lot of potential for optimization.

The flow map and the interaction with the Sankey in the frontend also could be optimized.

When clicking the “All” button to select all flows in the Sankey, every single flow is

requested in an individual request to the server. The backend filter route already provides

faster ways to request all at once.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

83

The clustering of actors on the map is done frontend-side. To increase the performance, the

clustering could be implemented in the backend.

Texts

All of the error messages, that pop up in the frontend, are generated in the backend. Not all

errors in the backend are caught, resulting in occasional “500 Internal Server Error”

messages without detailed information attached.

Furthermore, many messages from the backend are very generic and not necessarily

understandable or relevant to the common user. Some could already be avoided by

checking the user inputs more frequently in the frontend, but are not implemented yet due

to a lack of time in the development.

The current implementation of the translations was not made with keeping all possible

languages in mind. Instead of translating whole sentences with variables marked inside,

sentences are often disassembled into their parts, placing variables in between. This leads

to a heavy fragmentation in the translation files and the reconstruction of the sentences

might not be applicable to all languages.

More flexible indicator definitions

Indicators can be calculated at the moment related to the total number of inhabitants in an

area. The population data has to be provided beforehand and uploaded to the GDSE. For

certain questions, a more generic definition of indicators could be required, relating flows

in a certain area to certain household or company types in that area. A technical solution

could be to define the indicators based upon WFS-Layers, which deliver the required data

for the area as points or polygons and could be defined very flexible for a project.

Integration of external APIs

In addition, WFS-Layers could be used to calculate additional sustainability indicators like

the accessibility to facilities or the number of inhabitants exposed to certain emission levels.

The calculation (Accessibility Isochrones, Odour Contours etc.) could be calculated using

external APIs, the GDSE would be used to integrate the results and calculate the relevant

indicators and visualize the results.

Follow-up repositories

Up to date, there are already a couple of repositories that have been forked from the

REPAiR project for different purposes:

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

84

• CINDERELA is an H2020 project that has used the Status Quo module of the

GDSE for the analysis of material flows.

https://github.com/H2020Cinderela/Cinderela-Web

• Amsterdam Nulmeting has been a follow-up project by the TU Delft in

collaboration with the municipality of Amsterdam that provided a material flow

analysis for the Amsterdam Circular Economy Strategy 2020-2025. The analysis

has been based on the advanced Material Flow modules of the GDSE.

https://github.com/VasileiosBouzas/geoFluxus

• The material flow analysis module has been further rebuilt to include a series of

additional visualisations and to couple material flow data with the carbon

emissions as part of the CINDERELA h2020 project.

https://github.com/VasileiosBouzas/geoflux

• geoFluxus is a spin-off company that has been started by the REPAiR project

members in 2020 and continues developing the GDSE and implementing the tool

as an open source Circular Economy monitor for governments and corporations.

Repository: https://github.com/geoFluxus/geofluxusApp

More information about the project can be found here: http://geofluxus.com/

https://github.com/H2020Cinderela/Cinderela-Web
https://github.com/VasileiosBouzas/geoFluxus
https://github.com/VasileiosBouzas/geoflux
https://github.com/geoFluxus/geofluxusApp
http://geofluxus.com/

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

85

Appendix

This document has been used throughout the REPAiR project as a handout to the data

captains who have been preparing the material flow data for the upload into the GDSE.

It has been the responsibility of the data captains to prepare the data according to the

templates using their original datasets.

Material Flow Data Upload Instructions

All datasets need to be uploaded on OSF by the data captains.

Each dataset must be uploaded along with the metadata.txt

All datasets should be uploaded following the order of the timeline below:

If needed, the datasets can always be updated later during the project. However, it is

important that each dataset that appears later in the timeline is dependent on all of the

previous datasets and therefore cannot be uploaded earlier than them.

Figure 32: Order of upload for different data sets

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

86

Data Preparation Process

The basic steps to convert data from its original format into the GDSE tables are as

following:

1) Match actors in your data with the actors in the GDSE database.

 There are going to be two types of actors in your data: companies (waste producers,

waste collectors, waste treatment facilities) and households.

For the companies, you can match them to the ones from the ORBIS database by

the combination of postcode + street name + house number, which should be unique for

each address. It is not always a correct match but mostly it works and at least this way we

get the geographical location right even if multiple companies are registered under the

same address.

However, if your data is already linked with NACE codes, then you should also

check that matching it with a company in ORBIS should not change the original NACE code.

You can find the ORBIS list of all companies that have been extracted for your case

study on OSF folder “T3.2_Actors_--keyflow--”.

 If the companies are not to be found in the ORBIS database (or simply cannot be

matched because of the differences in names & addresses), you need to add them as extra

actors. This means that you need to prepare a .tsv file “T3.2_Actors_extra” (see section

“Actors” of this document for detailed explanations on how this table needs to be filled) and

upload it into the same folder “T3.2_Actors_--keyflow--” (with the metadata!). The

companies need to be given a new identifier instead of the BvDid (however still in the

column with the same name). The identifier can be any combination of numbers and letters

as long as it unique (e.g. GENT000023). You should have this one file of the extra actors

consistent throughout all of your data: if you encounter these same companies in the other

datasets, they should not get a new identifier but the one that has been already created.

 If you have a list of companies with their names, it is also possible to run an ORBIS

search in their database based on names - this increases the chances of a correct match. If

you would like this to be done for you, you should contact somebody from the TU Delft team

to run it for you (e.g. Rusne or Alex)

 If companies do not have an address, there is no error but if there is no address,

there will be no point on the map and that flow will simply not appear in the GDSE maps.

For the households you need to match them to the administrative codes that have

been provided together with the shapefiles some time ago by the data captains - check your

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

87

files on the OSF to see what unique identifiers were provided. These need to be provided

again as origins or destinations in the Flow & Stock tables (see the Tables and Explanations

section for detailed explanations).

A single actor is:

1. only in one location (address);

2. has only one name;

3. has only one role in a waste chain, i.e. if the same company is waste producer (first

one in the flow chain) and waste treatment (last one in the chain), then it needs to

be split into multiple actors with separate unique identifiers (name and location

can stay the same)

2) Prepare the Material table.

 The material table can be prepared in two ways - by providing a .tsv file with all the

materials (see section Materials for the detailed explanations) or by using the GDSE

interface on https://gdse.h2020repair.bk.tudelft.nl/data-entry/ at the section “Edit

Materials”. The materials can be added, deleted or renamed where needed.

3) Prepare the Composition table.

 Composition table mainly shows how much of which material is in which flow

amount. These materials must match with the materials in your material hierarchy (the

previous step) (see the Waste / Product Composition section for a more detailed

explanation)

4) Prepare the Flows & Stocks.

 Flows are the most important part of the AS-MFA framework as they

demonstrate how the materials are flowing from one actor to another, whether the actor is

a set of households or an individual company.

Stocks demonstrate where materials accumulate, i.e. where they stay for longer

than a year. The only difference between the Flow and Stock tables is that Stocks do not

have destination, which means that materials are kept at the location of the actor of origin.

See the Flows & Stocks section for a more detailed explanation.

https://gdse.h2020repair.bk.tudelft.nl/data-entry/

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

88

5) Upload files on the OSF.

 The final files (tables) that need to be provided are:

 T3.2_Actors.tsv with the list of additional actors that were not in ORBIS. I suggest

to keep this list in one single file for all the data you have in order to avoid duplicates and for

the remaining data always double-check both ORBIS identifier (BvDid) and this list.

 T3.2_Materials.tsv is optional as material hierarchy can also be created manually

using the GDSE interface.

 T3.2_Composition.tsv - can be split into multiple files for each type of waste or can

be one file - however it is more convenient to you.

 T3.2_Flows.tsv - it is convenient to split this according to the different actor to

actor relationships but not necessary from the GDSE point of view.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

89

Tables and Explanations

Figure 33: Relationship between all tables

The relationship between all tables that need to be delivered for the AS-MFA input into the GDSE.

Those cells which are fully filled with a colour show which table the primary key comes from. When

the key reappears in a different table, it is highlighted with the same colour. E.g. NACE codes in the

tables “Actors” and “Compositions” must be present in the table “Activities”.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

90

Administrative Units

Note: Administrative units are related to a case study and not a key flow, therefore the same
administrative units will be used for all key flows of the same case study.

Area Levels

Unique Key: [Name; Level]

Table 10: Template of “Area Levels”

Name Level

Name of the administrative unit, ideally from the list
below, can also be given in a local language

Corresponding level of the administrative unit, ideally
according to the list below

Comune 8

• 3-4 levels of administrative units need to be chosen per case study, according to

the granularity of available data, size of the focus area, governance structure.

• Each level must correspond to one of the levels in the table below. Matching

terminology is not important, however the hierarchy must match. I.e. it can

happen that in one country “Municipalities” are composed of “Districts”. In that

case “Districts” can be called “CityDistricts” as they are lower down the hierarchy

chain than municipalities. Also if “Municipalities” are the same as “NUTS3”, they

can be assigned to whichever level as long as the overall hierarchy between all

the units is consistent (administrative units higher up the hierarchy must consist

of the ones lower down the hierarchy and not the other way round).

• It is better to use internationally accepted units, e.g. NUTS and geometry

provided by them for the overall consistency.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

91

1 World

2 Continent

3 Country

4 NUTS1

5 NUTS2

6 NUTS3

7 District

8 Municipality

9 CityDistrict

10 CityNeighbourhood

11 CityBlock

12 StreetSection

13 House

Areas

Unique Key: [Code]

Table 11: Template of “Areas”

Parent Level Inhabitants Name Code WKT

Code of the
higher level
administrative
boundary (if
applicable)

Level number of
the
administrative
unit as
indicated in the
“Area Levels”
table

Number of
inhabitants in
the area

Name of the
area

Unique
administrative
code of the
area, must be
unique also
across all
administrative
units

WKT geometry
of the area in
WGS84

NL 4 325 678 Noord Holland NL001 POLYGON((-
71.17765850
52917
42.39029097
39571, …)

• Units have to be topologically consistent. A lower level unit cannot belong to

multiple higher level units, e.g. one municipality cannot belong to multiple

districts.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

92

• Not all units must have corresponding lower level units provided. E.g. If the whole

country is partitioned into provinces and the provinces are partitioned into

regions, then regions can also be supplied for one of the relevant provinces only

and not for the whole country.

• Geometries must be provided in WGS84 EPSG:4326. Polygon geometries must

be topologically valid.

Figure 34: Example of the Administrative Units for the Pecs case study

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

93

Activity Groups

Unique Key: [Code]

Table 12: Template of “Activity Groups”

Code Name

A*38 code that represents Activity Group Name of the Activity Group as in NACE Rev. 2

A Agriculture, Forestry and Fishing

Additional dummy codes can be added if necessary:

1) V Consumption in households

2) WE Export

3) WI Import

4) WU Unknown

 They belong to division 00.

Activities

Unique Key: [NACE]

Table 13: Template of “Activities”

NACE Name AG

4 digit NACE code in format “A-
0111”

Name of the Activity as in NACE
Rev. 2

A*38 code that represents
Activity Group. Must be present
in the list of Activity Groups

A-0112 Growing of rice A

List of all NACE activities and their correspondence with the activity groups:

https://osf.io/vb8jr/

We are using only the 4 digit NACE codes.

https://osf.io/vb8jr/

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

94

Additional dummy codes:

1) V-0000 Consumption in households

2) WE-0001 Export

3) WI-0002 Import

4) WU-0003 Unknown

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

95

Actors

Unique Key: [BvDid]

Table 14: Template of “Actors”

BvDid name NACE code year

Identification
used by ORBIS.
Can also be any
other custom
unique identifier.

Name of the
company

4 digits or letter +
4 digits, must be
present in the list
of Activities

Consolidation
code according to
ORBIS (optional)

Last time the
company has
been reported

NL000786543 Orgaworld B.V. E-3623 C1 2016

description
english

description
original

BvDii Website employees turnover

Description
(optional)

(optional) ORBIS BvD
Independence
Indicator
(optional)

(optional) (optional) thousands in
EUR
(optional)

 U www.orgaw
orld.nl

298 1200

The template is based on the extracts of the ORBIS database, however, any additional

necessary actors can be added later either manually one by one using a GDSE interface or

by uploading a bulk table following the same template.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

96

The need for additional actors can arise from the available data if:

• it includes companies that have not been registered in the ORBIS database;

• It includes companies that are outside of the chosen study area and therefore

were not included in ORBIS extracts, however still participate in the relevant

flows (e.g. a significant part of waste generated in the study area can be treated in

a waste treatment facility which lies in another province or even a neighbouring

country)

• It includes companies that perform economic activities which have not been

included in the original list of the anticipated economic activities (e.g. food waste

may be generated by companies that are not related with food production or

services, e.g. educational institutions, hospitals, etc.)

• companies cannot be matched to the ones registered in ORBIS database as they

have different addresses.

All actors need to belong to one of the activities in the “Activities” table. If an activity of an

actor is (temporarily) unknown, a new activity can be added based on the “Activity Groups”

by adding (unknown) to the Activity Group name, e.g. “E-0099 Waste Management

(Unknown)”. These actors can be later reclassified to match the actual economic activities

they are carrying out.

Not all actors need to be companies. For now the following non-company actors are

supported in the GDSE database structure, although additional ones can be created upon

request:

• Households. Households are involved in the NACE activity “V-0000

Consumption in Households”. They need to be matched with one of the

Administrative Units that the data is aggregated to. The GDSE also supports

providing data on a single house level if such kind of data is available, however it is

far more likely to have aggregated data on neighbourhood, district or even

municipality level. In that case an administrative units becomes an actor and

needs to be input into the GDSE following the same template, as in the example

below.

Table 15: Example of household type actors

BvDid name NACE code year

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

97

WK003403 Almere Buiten V-0000

WK036200 Amstelveen V-0000

description
english

description
original

BvDii Website employees turnover

• Export /Import. If it is known which country/continent the certain flows go to or

come from, however, a specific actor (company) is not known, it is possible to add

flows towards generic chosen areas which will then belong to the activities “WE-

0001 Export” or “WI-0002 Import”

Actors can be edited manually one by one using the GDSE interface as in the image below.

Figure 35: Example of an actor in the GDSE interface that can be found under “Data Entry” → “Edit Actors”

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

98

Actor Locations

Unique Key: [BvDid]

Table 16: Template of “Geolocated Actors”

BvDid Postcode Address City Country wkt

Identification
used by
ORBIS. Can
also be any
other custom
unique
identifier
(must be
present in the
list of Actors)

(optional)

(optional)

(optional)

(optional) in WGS84, at
least 6 digits
after comma

NL0007865
43

1876 JK Meerlanders
traat 6

Amsterdam Netherlands POINT(4.98
7659
54.987654)

Some of the companies come geolocated in the ORBIS database, in that case the

longitude/latitude fields can be used to find the exact locations. The locations are provided

with the precision of decimal second which may result into positional bias of up to 111.32m

depending on the relative position to the equator.

Actors that do not have their locations provided by the ORBIS database or those that have

been added later, can be located using the geolocation service. It is advised to use the

BatchGeo service for consistency throughout the project.

Geolocation can also be entered, edited or updated using the “Actor Edit” tab in the GDSE

“Data Entry”.

More detailed instructions on how to perform geolocating can be found here:

https://docs.google.com/document/d/1DljCio2LAjr2er_mJvM4OSjdvsHbaAOAttOCdeCv

SzM/edit

Materials

https://docs.google.com/document/d/1DljCio2LAjr2er_mJvM4OSjdvsHbaAOAttOCdeCvSzM/edit
https://docs.google.com/document/d/1DljCio2LAjr2er_mJvM4OSjdvsHbaAOAttOCdeCvSzM/edit

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

99

Unique Key: [Name]

Table 17: Example of the Materials hierarchy and its corresponding table for the GDSE

Parent Name

Material parent in the hierarchy, leave the field
empty if the material belongs to the level I of the
hierarchy

Material name

Cereals Wheat

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

100

Figure 36: Example of the “Edit Materials” tab in the GDSE “Data Entry” interface

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

101

Waste / Product Composition

Unique Key: [Name]

Table 18: Template of the “Composition” table

NACE Name Material Fraction Hazardou
s

Avoidable Source

A-0001,
must be
present in
the list of
Activities

Unique
name for
the
compositio
n. If
possible,
should
contain
EWC code

Composing
material
(must be
present in
the
Material
list)

Part of the
correspond
ing
material.
All
fractions in
one
compositio
n must add
up to 1

TRUE or
FALSE, also
FALSE if
not
applicable

TRUE or
FALSE, also
FALSE if
not
applicable

BibTEX key
for the
source
(must be
present in
the list of
publication
s)

A-0112 02212
Roofing
materials

Wood 0.7 FALSE FALSE lma2016

 Steel 0.3 FALSE FALSE lma2016

Composition table is needed to clarify what exactly every single flow consists of. As data

can refer to the different compositions containing the same material, it is important to split

the flow into its fractions as much as the data allows to do so. An easy example of the flow

composition would be waste flow from a bakery which throws away 1 tonne of packed

bread. If it is known that bread is packed in a plastic package which weighs 50g for each 1kg

of bread, then the composition of such product (or waste) is:

0,05 / (1 + 0,05) = 0,0476 of plastic

1,00 / (1 + 0,05) = 0,9524 of bread

A tone of this waste flow then means 47,6kg of plastic + 952,4kg of bread.

All composing materials need to be present in the Material list. The material list can be

adapted based on the requirements of the data at any time during the project. Only those

materials that have already been assigned to some of the flows cannot be altered anymore.

New materials can be added at any time at any of the hierarchical levels.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

102

Fractions for one composition always need to add up to 1.00 (like in the example in the

template 0.7 of Wood + 0.3 of Steel = 1.0 of 02212 Roofing materials)

The column “NACE” refers to the primary activity as producer of this particular

composition.

Composition names should always be unique, however the same composition can be used

in multiple flows and stocks. E.g. if a general composition for municipal solid waste is known

for the whole study area and no further differentiation is possible between different

municipalities/city districts, then the composition can be called “General municipal solid

waste” and referred to for each of the actors of the household type following there amounts.

If known, the name of the composition should start with an EWC code.

Each material should be tagged with Avoidable (TRUE), e.g. a banana, or Unavoidable

(FALSE), e.g. a banana peel. If this tag is not applicable, then the material is unavoidable and

therefore (FALSE).

Additional descriptions can be given for each individual flow defining collection method,

quality, additional materials, processing, etc. in the table of Flows and Stocks.

See section “Data Sources” for the explanation of the “Source” column.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

103

Flows & Stocks

Unique Key: [Origin, Destination, Composition]

Origin Destination
*

Am
oun
t

Composit
ion

Year Waste Source Descr
iption

Process*

BvDid or
other
identifier
(must be
present in
the list of
Actors)

BvDid or
other
identifier
(must be
present in
the list of
Actors)

*No
destination
for stocks

t/ye
ar

Name of
the
compositi
on, must
be present
in the list
of
Compositi
ons

 TRUE if
it is
waste,
FALSE if
it is
product

BibTEX
key for
the
source
(must be
present
in the
list of
publicat
ions)

 Treatment
process,
should be
present in
the list of
processes
provided by
the WP4
(optional)

LMA000
01

LMA00024 900 02212
Roofing
materials

2016 TRUE lma201
6

Cont
ains
asbes
tos

Recycling

Flows are the most important part of the AS-MFA framework as they demonstrate how the

materials are flowing from one actor to another.

Stocks demonstrate where materials accumulate, i.e. where they stay for longer than a year.

The only difference between the Flow and Stock tables is that Stocks do not have

destinations, which means that materials are kept at the location of the actor of origin.

Flows are always moving in a direction from the origin to the destination. The amounts are

added in tonnes per year (t/year).

Both the origin and the destination are actors that must be present in the Actor table. If

flows need to involve actors that are not yet present in the actor table, those new actors

need to be added first. The origin and the destination columns refer to the unique identifier

of an actor that in most cases is the BvDid number taken from the ORBIS database,

otherwise it can be an identifier of the administrative area (in the case of households) or a

unique identifier given by the data captain (see more detailed explanations in the section

“Actors”).

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

104

Composition refers to the unique name of a composition that has been provided in the table

“Composition”. Multiple flows and stocks can refer to the same composition.

It is possible that flows between the same origin and the same destination have different

waste compositions (e.g. a bakery throws away 10t of bread packed in plastic and 20t of

bread packed in paper). In that case this information can be added as two separate flows

referring to two different compositions, or as one flow with the composition of [bread;

plastic; paper] as long as the multiplication of ratios and amounts lead to a correct result for

each of the separate material fractions.

Each flow must have a unique combination of Origin-Destination-Composition. If there are

two or more flows with the same combination, they must be added up together before

entering the system, otherwise one may overwrite the other. Each stock must have a unique

combination of Origin-Composition.

Each flow/stock should be tagged as waste or not waste according to the definition

developed in REPAiR.

Each flow/stock can be described in a free text format providing any information that may

be relevant later, e.g. quality of the product/waste, treatment process, transportation or

collection process or any other information that is present in the data however not

supported by the GDSE data structure.

The “process” column refers to the treatment process of waste, e.g. recycling, composting,

biodegrading, etc. The definite list of processes will be provided by the WP4, until now the

process name can be entered in a free form.

See section “Data Sources” for the explanation of the “Source” column.

Flows and stocks should be written in separate .tsv files with appropriate naming.

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

105

Data Sources

Figure 37: Data Sources

To ensure scientific integrity and in order to prevent mistakes and facilitate their eventual

correction, every number that is used for the AS-MFA needs to be traceable back to its

original source. Therefore, the data structure supports referencing of each flow and

composition.

Flows and compositions may have separate data sources, e.g. the amounts of household

waste generated in a certain municipality can be provided by the municipality, while the

composition of household waste may be researched by a different institution and for a

different purpose.

The process to control and keep track of the used data sources is as explained in the timeline

above.

All used data sources must be described using a BibTex format (more information available

here: http://www.bibtex.org/). We recommend using Mendeley, JabRef or a similar

bibliography reference management software to compile a list of used sources.

http://www.bibtex.org/

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

106

The BibTex file needs to be uploaded into the database before uploading the Flows and

Compositions following these steps:

1. Login into the GDSE on https://gdse.h2020repair.bk.tudelft.nl/

2. Use this link to enter the publication:

https://gdse.h2020repair.bk.tudelft.nl/admin/publications_bootstrap/publicatio

n/

3. Click on “IMPORT BIBTEX +” button on the top right of the screen

4. Copy and paste your BibTex(es) into the empty field - you can paste more than

one just as it would appear in a .bib file

5. Click “IMPORT”

6. If the import has been successful, your publications will appear on the list. Use

the citekey as a reference in the Composition and Flow tables.

Alternatively, each source can be entered manually by clicking “ADD PUBLICATION +”

button and filling all relevant fields manually. Citekey will generated automatically unless

provided by the user.

If a source does not have a permanent identification (DOI or POI), it needs to be uploaded

on the OSF in the folder “Data Sources”. The folder is only accessible to the administrators

of OSF (Max Bohnet, Rusne Sileryte and Alex Wandl) and the respective data captains of

the case study, therefore it is completely safe to upload even sensitive and protected

datasets there.

https://gdse.h2020repair.bk.tudelft.nl/
https://gdse.h2020repair.bk.tudelft.nl/admin/publications_bootstrap/publication/
https://gdse.h2020repair.bk.tudelft.nl/admin/publications_bootstrap/publication/

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

107

Most Common Errors

• An Activity refers to the activity group that is not in the Activity Group list

• An Actor refers to the activity that is not in the Activity list

• A Flow/Stock refers to Actor or Material that are not in their respective lists

• Material fractions do not add up to 1.00 in Product/Waste composition

• Household administrative unit missing in the list of Administrative Units
previously uploaded by the data captains (check on OSF for the files that have
been used)

• “Tabs” in texts

• Duplicate entries

• Shapefiles not in WGS84

• Amounts not in tonnes/year but kg/year

• Missing data sources

• Software conversion/interpretation problems, e.g. SHP to XLSX that turn
postcodes into numbers (removing the “0” in front), interpret thousand separators
as decimals or the other way round

• Origin and destination is the same within one flow

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

108

Correspondence between the templates and the GDSE database structure (for WP2)

Table 19: Dataset Administrative Units

Dataset Administrative Units

Data File OSF/--CaseStudy--/Spatial_data/T3.1_Administrative_Units/--UnitName--.shp

Tables studyarea_adminlevels

studyarea_area

Correspondence ‘Name’ → studyarea_adminlevels.name

‘Administrative level’ → ‘studyarea_adminlevels.level*

‘Level ID’ → studyarea_adminlevels.casestudy_id*

File Name’ → shapefile for the studyarea_area

$geom(multipolygon) → studyarea_area.geom (W GS84, 4326)

‘Name’ → studyarea_area.name

‘AdminLevel’ → studyarea_area.adminlevel_ id

 ‘Code’ → studyarea_area.code**

*

ID Level

1 World

2 Continent

3 Country

4 NUTS1

5 NUTS2

6 NUTS3

7 District

8 Municipality

9 CityDistrict

10 CityNeighbourhood

11 CityBlock

12 StreetSection

13 House

** e.g. NUTS code or any other administrative code corresponding to the area

Template https://osf.io/9x27b/ → Administrative Levels

Table 20: Dataset Materials

Dataset Materials

Data File OSF/--CaseStudy--/MFA_data/T3.2_Materials_--Keyflow--/T3.2_Materials.tsv

https://osf.io/9x27b/

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

109

Tables asmfa_material

Correspondence $column# → asmfa_material.level

$text → asmfa_material.name

$text(column#-1) → asmfa_material.parent

Template https://osf.io/68m5e/

Table 21: Dataset Activity Groups

Dataset Activity Groups

Data File OSF/--CaseStudy--/MFA_data/T3.2_Activity_groups_--Keyflow--
/T3.2_Activity_Groups.tsv

Tables asmfa_activitygroup

Correspondence ‘Code’ → asmfa_activitygroup.code*

‘Name’ → asmfa_activitygroup.name

*ISIC Rev.4/NACE Rev. 2, letters of the NACE code

Template https://osf.io/wrpzx/

https://osf.io/68m5e/
https://osf.io/wrpzx/

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

110

Table 22: Dataset Activity

Dataset Activities

Data File OSF/--CaseStudy--/MFA_data/T3.2_Activities_--Keyflow--/T3.2_Activities.tsv

Tables asmfa_activity

Correspondence ‘NACE’ → asmfa_activity.nace*

‘Name’ → asmfa_activity.name

‘AG’ → asmfa_activity.activitygroup_id

*NACE Rev. 2, in form of ‘X-0001’

Template https://osf.io/pfu3e/

Table 23: Dataset Actors

Dataset Actors1

Data File OSF/--CaseStudy--/MFA_data/T3.2_Actors_--Keyflow--/T3.2_Actors.tsv

Tables asmfa_actor

Correspondence 'BvD ID number' → asmfa_activity.BvDid"'

'Company name’ → asmfa_activity.name

'Cons.code' → asmfa_activity.consCode

'Lastavail.year' → asmfa_activity.year

'Trade description (English)' → asmfa_activity.description_eng
'Trade description in original language' → asmfa_activity.description
'BvD Indep. Indic.' → asmfa_activity.BvDii

'Website address' → asmfa_activity.website

'Number of employeesLast avail. yr' → asmfa_activity.employees
EUR' → asmfa_activity.turnover_currency

'Operatingrevenue(Turnover)th EURLast avail. yr' → asmfa_activity.turnover

'NACE Rev. 2Core code (4 digits)' → asmfa_activity.activity_id

Template No template available, ORBIS output table with all required fields

1 Uploaded by WP2 as an extract from ORBIS database

https://osf.io/pfu3e/

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

111

Table 24: Dataset Geolocated Actors

Dataset Geolocated Actors2

Data File OSF/--CaseStudy--/MFA_data/T3.2_Actors_geolocated_--Keyflow--

/T3.2_Actors_geolocated.shp

Tables asmfa_administrativelocation

Correspondence 'Postcode’ → asmfa_administrativelocation.postcode

'Address' → asmfa_administrativelocation.address

'City' → asmfa_administrativelocation.city

'BvDIDNR' → asmfa_administrativelocation.actor_id

Point(x,y): → asmfa_administrativelocation.geom (WGS84, 4326)

Template No template available

Table 25: Dataset Households

Dataset Households

Data File OSF/--CaseStudy--/MFA_data/T3.2_Actors_--Keyflow--/T3.2_Households.tsv

Tables asmfa_actor

Correspondence 'Identifier'*: → asmfa_actor.BvDid

'Name': → asmfa_actor.name

V-0000 → asmfa_actor.activity_id

*Identifier must match an identifier among the provided Administrative Units,
metadata file should indicate which level of Administrative Units does the identifier
refer to

Template https://osf.io/nc36f/

Table 26: Dataset Filtered actors

Dataset Filtered actors

Data File OSF/--CaseStudy--/MFA_data/T3.2_Actors_--Keyflow--/T3.2_Actors_filtered.tsv

Tables asmfa_actor

2 Uploaded by WP2 as a result of Geocoding service

https://osf.io/nc36f/

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

112

Correspondence 'Identifier': → asmfa_actor.BvDid

'Reason'*: → asmfa_actor.reason_id

‘Included’ → asmfa_actor.included

*0 - Included; 4 - Outside material Scope; 5 - Does not produce waste

Template https://osf.io/mjh5q

Table 27: Dataset Waste/ Product Composition

Dataset Waste/Product Composition

Data File OSF/--CaseStudy--/MFA_data/T3.2_Compositions_--Keyflow--
/T3.2_Waste_composition.tsv

OSF/--CaseStudy--/MFA_data/T3.2_Compositions_--Keyflow--
/T3.2_Product_composition.tsv

Tables asmfa_composition

asmfa_productfraction

Correspondence 'Custom name' → asmfa_composition.name

'NACE' → asmfa_composition.nace

‘Fraction’ → asmfa_productfraction.fraction*

‘Material’ → asmfa_productfraction.material_ id

‘Avoidable’ → asmfa_productfraction.avoidable

*all product fractions referring to the same composition must add up to 1,00

Template https://osf.io/h8t5f/

https://osf.io/mjh5q
https://osf.io/h8t5f/

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

113

Table 28: Dataset Flows

Dataset Flows

Data File OSF/--CaseStudy--/MFA_data/T3.2_Flows_--Keyflow--/T3.2_Flows_actor2actor.tsv

Tables asmfa_actor2actor

Correspondence 'Amount' → asmfa_actor2actor.amount

'Destination' → asmfa_actor2actor.destination_id

'Origin' → asmfa_actor2actor.origin_id

'Year' → asmfa_actor2actor.year

‘Source’ → asmfa_actor2actor.publication_id*

True/False → asmfa_actor2actor.waste

'Composition' → asmfa_actor2actor.composition_id

*Source is provided as a bibtex key, respective bibtex entry must be uploaded to the
database beforehand

Template https://osf.io/2t67r/

Table 29: Dataset Stocks

Dataset Stocks

Data File OSF/--CaseStudy--/MFA_data/T3.2_Stocks_--Keyflow--/T3.2_Stocks_actor.tsv

Tables asmfa_actorstock

Correspondence 'Amount' → asmfa_actor2actor.amount

'Origin' → asmfa_actor2actor.origin_id

'Year' → asmfa_actor2actor.year

‘Source’ → asmfa_actor2actor.publication_id*

True/False → asmfa_actor2actor.waste

'Composition' → asmfa_actor2actor.composition_id

*Source is provided as a bibtex key, respective bibtex entry must be uploaded to the
database beforehand

Template https://osf.io/vkfb3

Common

Datasets common for all case studies. Prepared and uploaded by WP2.

https://osf.io/2t67r/
https://osf.io/vkfb3

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

114

Table 30: Dataset NACE-EWC correspondence table

Dataset NACE-EWC correspondence table

Data File OSF/Common/T3.2_AS-MFA/NACE-EWC.tsv

Tables asmfa_waste, asmfa_composition

Correspondence 'NACE' → asmfa_composition.nace

'Haz' → asmfa_waste.hazardous

'EWC_code' → asmfa_waste.ewc

'EWC_name' → asmfa_composition.name

'Item_descr' → asmfa_waste.wastetype

Table 31: NACE-CPA correspondence table

Dataset NACE-CPA correspondence table

Data File OSF/Common/T3.2_AS-MFA/NACE-CPA2008.tsv

Tables asmfa_product, asmfa_composition

Correspondence 'NACE' → asmfa_composition.nace

'CPA 2008 DESCRIPTION' → asmfa_composition.name

'CPA 2008 CODE → asmfa_product.cpa

688920 REPAiR Version 2.0 01/10/20 - D2.6 Technical Documentation

 REPAiR - REsource Management in Peri-urban Areas

115

References

Arciniegas, G., Šileryté, R., Dąbrowski, M., Wandl, A., Dukai, B., Bohnet, M., & Gutsche, J.-

M. (2019). A geodesign decision support environment for integrating management of

resource flows in spatial planning. Urban Planning, 4(3), 32–51.

http://dx.doi.org/10.17645/up.v4i3.2173

Jochim, V. (2018): Entwicklung eines Visualisierungskonzeptes zur Darstellung

georeferenzierter Mengenflüsse im Rahmen des EU-Projektes REPAiR. Master Thesis at

the Department of Geoinformatics at HafenCity University.

REPAiR (2016). Deliverable 2.1: Vision of the GDSE Applications. Project REPAiR.

Retrieved from: http://h2020repair.eu/wp-

content/uploads/2017/09/Deliverable_2.1_Vision_of_the_GDSE_Applications.pdf

REPAiR (2017a). Deliverable 2.2: Data Requirement Description and Data Delivery Plan

for the Case Study Areas. Project REPAiR.

REPAiR (2017b). Deliverable 2.3: Programmed GDSE Modules. Project REPAiR.

REPAiR (2019a). Deliverable 2.4: Handbook for Geodesign Workshops. Project REPAiR.

Retrieved from:

https://teams.connect.tudelft.nl/projects/vc/repair/Deliverables/D2.4%20Handbook%20

for%20Geodesign%20Workshops_final_version.pdf

REPAiR (2019b). D3.3 Process model for the two pilot cases: Amsterdam, the Netherlands

& Naples, Italy. Project REPAiR.

REPAiR (2020). Deliverable 2.5: Adapted GDSE modules. Project REPAiR.

http://dx.doi.org/10.17645/up.v4i3.2173
http://h2020repair.eu/wp-content/uploads/2017/09/Deliverable_2.1_Vision_of_the_GDSE_Applications.pdf
http://h2020repair.eu/wp-content/uploads/2017/09/Deliverable_2.1_Vision_of_the_GDSE_Applications.pdf
https://teams.connect.tudelft.nl/projects/vc/repair/Deliverables/D2.4%20Handbook%20for%20Geodesign%20Workshops_final_version.pdf
https://teams.connect.tudelft.nl/projects/vc/repair/Deliverables/D2.4%20Handbook%20for%20Geodesign%20Workshops_final_version.pdf

	Change control
	Acronyms and Abbreviations
	Table of Contents
	List of Figures
	List of Tables
	Publishable Summary
	1 Introduction
	1.1 Overview of the technical components of the GDSE
	1.2 Hardware requirements
	1.2.1 Hardware requirements for the Server (Backend)
	1.2.2 Touch Table for the Frontend
	1.2.3 Using the GDSE in Online-Workshops

	2 Installation
	2.1 Installation of the GDSE-Server
	Requirements
	Database
	Run the Django server
	Settings and environment variables
	Using Docker

	2.2 Installation of a development-environment for debugging
	2.3 Testing, Branch Policy and Continuous Integration

	3 Frontend and Backend Modules
	3.1 Server backend
	Basic architecture
	Project Structure
	Data Structure
	logic: how schemes are translated
	Flow Filters
	Indicators
	Graph Walker

	3.2 Web frontend
	Architecture of the web frontend
	Design
	JS Entry Points
	Sessions
	Visualizations

	3.3 Internationalization

	4 Data Management
	4.1 Overview of the required data and user input
	4.2 Material Flow Data preparation and Data Entry
	Bulk Upload
	Edit Actors / Flows
	Edit Materials
	Delete AS-MFA data

	4.3 Exporting Data
	Exporting data directly from the user interface
	Exporting data from the database

	4.4 Integrating Geodata and Maps via WMS/WFS
	Uploading spatial data layers to the Open Science Framework (OSF)
	Publishing a spatial layer in REPAiR’s GeoServer
	Loading layers in the GDSE

	4.5 Open Data Policy and Restrictions: User Management and Access Rights
	User’s responsibility
	Workshop mode

	5 Outlook of possible further development
	Refactoring
	Rest API
	Performance
	Texts
	More flexible indicator definitions
	Integration of external APIs
	Follow-up repositories

	Appendix
	Material Flow Data Upload Instructions
	Data Preparation Process
	Tables and Explanations
	Administrative Units
	5.1.1

	References

